Что обозначает слово алгебра
Значение слова «алгебра»
[Лат. algebra из араб.]
Источник (печатная версия): Словарь русского языка: В 4-х т. / РАН, Ин-т лингвистич. исследований; Под ред. А. П. Евгеньевой. — 4-е изд., стер. — М.: Рус. яз.; Полиграфресурсы, 1999; (электронная версия): Фундаментальная электронная библиотека
А’ЛГЕБРА, ы, мн. нет, ж. [от араб.]. Отдел математики, часть математического анализа (см. анализ).
Источник: «Толковый словарь русского языка» под редакцией Д. Н. Ушакова (1935-1940); (электронная версия): Фундаментальная электронная библиотека
а́лгебра
1. раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающих обычные операции сложения и умножения чисел
2. то же, что элементарная алгебра, раздел алгебры [1], охватывающий свойства операций с вещественными и комплексными числами, а также правила тождественных преобразований математических выражений и уравнений с использованием символов, обозначающих такие числа, и элементарных функций
3. тип алгебраических структур; множество из каких-либо объектов, над элементами которого определены некоторые операции, являющиеся, как правило, обобщением сложения и умножения
4. книжн. сложная система навыков, знаний, методов в какой-либо области ◆ Нужны объективные методы оценки эффективности производств, включающие в себя не только арифметику, но и социальную алгебру нашей действительности. Марина Наумова, «Рыба ищет где глубже», 2001 г. ◆ Очень грубый подсчёт показывает абсолютное преобладание тех, кто может выиграть от дерегулирования занятости. Почему тогда реформы в этой сфере остаются столь сложными с политической точки зрения? Почему аргумент от простой арифметики в их поддержку недостаточен, а необходима хитроумная алгебра политических комбинаций? Владимир Гимпельсон, «Пора дерегулировать?», 2003 г.
Делаем Карту слов лучше вместе
Привет! Меня зовут Лампобот, я компьютерная программа, которая помогает делать Карту слов. Я отлично умею считать, но пока плохо понимаю, как устроен ваш мир. Помоги мне разобраться!
Спасибо! Я стал чуточку лучше понимать мир эмоций.
Вопрос: сепаратисты — это что-то нейтральное, положительное или отрицательное?
Алгебра
А́лгебра (от араб. الجبر , «аль-джабр» — восполнение [1] ) — раздел математики, который можно грубо охарактеризовать как обобщение и расширение арифметики. Слово «алгебра» также употребляется в названиях различных алгебраических систем. В более широком смысле под алгеброй понимают раздел математики, посвящённый изучению операций над элементами множества произвольной природы, обобщающий обычные операции сложения и умножения чисел.
Алгебра — это наука, изучающая алгебраические системы с точностью до изоморфизма.
Алгебраическая система — упорядоченная пара множеств . Первое множество (
) — элементы какой либо природы (числа, понятия, буквы). Второе множество (
) — операции над первым множеством (сложение, умножение, возведение в степень). Примеры: группа, кольцо, поле.
Содержание
История
Истоки алгебры уходят к временам глубокой древности. Ещё 4000 лет назад вавилонские учёные могли решать квадратные уравнения. Тогда никаких обозначений не было, и уравнения записывались в словесной форме. Первые обозначения появились в Древней Греции благодаря учёному Диофанту. Неизвестное число он назвал «ἀριθμός», вторую степень неизвестного — «δύναμις», третью «κύβος», четвёртую — «дюнамодюнамис», пятую — «дюнамокюбос», шестую — «кюбоккюбос». Все эти величины он обозначал сокращениями (ар, дю, кю, ддю, дкю, ккю). Ни вавилоняне, ни греки не знали и не признавали отрицательные числа.
За 2000 лет до нашего времени китайские учёные решали уравнения первой степени и их системы, а также квадратные уравнения. Они уже знали отрицательные и иррациональные числа. Поскольку в китайском языке каждый символ обозначает понятие, то сокращений не было. В 13 веке китайцы открыли закон образования биномиальных коэффициентов, ныне известный как «треугольник Паскаля». В Европе он был открыт лишь 250 лет спустя. [2]
В 12 веке алгебра попала в Европу. С этого времени начинается её бурное развитие. Были открыты способы решения уравнений 3 и 4 степеней. Распространения получили отрицательные и комплексные числа. Было доказано, что любое уравнение выше 4 степени нельзя решить алгебраическим способом.
Вплоть до второй половины XX века практическое применение алгебры ограничивалось, в основном, решением алгебраических уравнений и систем уравнений с несколькими переменными. Во второй половине XX века началось бурное развитие ряда новых отраслей техники. Появились электронно-вычислительные машины, устройства для хранения, переработки и передачи информации, системы наблюдения типа радара. Проектирование новых видов техники и их использование немыслимо без применения современной алгебры. Так, электронно-вычислительные машины устроены по принципу конечных автоматов. Для проектирования электронно-вычислительных машин и электронных схем используются методы булевой алгебры. Современные языки программирования для ЭВМ основаны на принципах теории алгоритмов. Теория множеств используется в системах компьютерного поиска и хранения информации. Теория категорий используется в задачах распознавания образов, определении семантики языков программирования, и других практических задачах. Кодирование и декодирование информации производится методами теории групп. Теория рекуррентных последовательностей используется в работе радаров. Экономические расчеты невозможны без использования теории графов. Математическое моделирование широко использует все разделы алгебры.
Классификация
Алгебру можно грубо разделить на следующие категории:
В некоторых напралениях углублённого изучения, аксиоматические алгебраические системы, такие как группы, кольца, поля и алгебры над полем на присутствие геометрических структур (метрик и топологий), совместимых с алгебраическими структурами. Список некоторых разделов функционального анализа:
Элементарная алгебра
Элементарная алгебра — раздел алгебры, который изучает самые базовые понятия. Обычно изучается после изучения основных понятий арифметики. В арифметике изучаются числа и простейшие (+, −, ×, ÷) действия с ними. В алгебре числа заменяются на переменные (a,b,c,x,y и так далее). Такой подход полезен, потому что:
А́ЛГЕБРА
Том 1. Москва, 2005, стр. 415
Скопировать библиографическую ссылку:
А́ЛГЕБРА [ср.-век. лат. algebra, от араб. аль-джебр, аль-джабр – воссоединение (отдельных частей уравнения)], раздел математики, принадлежащий, наряду с арифметикой и геометрией, к числу старейших ветвей этой науки; она изучает операции над математич. объектами и влияет на формирование общих понятий и методов математики. Задачи и методы А. заключались первоначально в составлении и решении уравнений. В связи с исследованиями уравнений развивалось понятие числа, были введены отрицательные, рациональные, иррациональные и комплексные числа; общее исследование свойств этих числовых систем относится к А. В алгебре сформировались буквенные обозначения, позволившие записать свойства действий над числами в форме, не содержащей конкретных чисел. Преобразования по определённым правилам (связанным со свойствами действий) буквенных выражений составляет аппарат классич. А. Развитие А. оказало большое влияние на развитие новых областей математики, в частности математич. анализа, дифференциального и интегрального исчисления. Применение А. возможно всюду, где приходится иметь дело с операциями, аналогичными сложению и умножению чисел. Эти операции могут производиться над объектами самой различной природы. Наиболее известным примером такого расширенного применения алгебраич. методов является векторная алгебра (см. Линейная алгебра ) и её дальнейшее обобщение – тензорная алгебра (см. Тензорное исчисление ), ставшая одним из важных средств совр. физики.
Что такое Алгебра
Значение слова Алгебра по Ефремовой:
Алгебра — 1. Раздел математики, изучающий свойства переменных числовых величин и общих методов решения задач при помощи уравнений.
2. Учебный предмет, содержащий основы данного раздела математики.
3. разг. Учебник, излагающий содержание данного учебного предмета.
Значение слова Алгебра по Ожегову:
Алгебра — Раздел математики, изучающий такие каличества величин, которые вытекают из отноше ний между величинами и не зависят от их природы
Алгебра в Энциклопедическом словаре:
Алгебра — (араб.) — часть математики, развивающаяся в связи с задачей орешении алгебраических уравнений. Решение уравнений 1-й и 2-й степенейизвестно еще с древности. В 16 в. итальянскими математиками найденырешения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), чтовсякое алгебраическое уравнение n-й степени имеет n корней (решений),действительных или мнимых. В нач. 19 в. Н. Абель и Э. Галуа доказали, чторешения уравнений степени выше 4-й, вообще говоря, нельзя выразить черезкоэффициент уравнения при помощи алгебраических действий. В современнойалгебре изучается общая теория совокупностей, в которых определеныалгебраические операции, аналогичные по своим свойствам действиям надчислами. Такие операции могут выполняться, напр., над многочленами, векторами, матрицами и т. д.
Значение слова Алгебра по словарю Ушакова:
АЛГЕБРА
алгебры, мн. нет, ж. (от араб.). Отдел математики, часть математического анализа (см. анализ).
Значение слова Алгебра по словарю Даля:
Алгебра
ж. наука счисления буквами и другими условными знаками, взамен цифр, которые вставляются только при окончательном выводе. буквосчисление, общая арифметика. Алгебраический, алгебрический, к сему способу относящийся. Алгебраист, алгебрист м. сведущий в науке этой.
Значения слова алгебра
Словарь Ушакова
а лгебра, алгебры, мн. нет, жен. (от араб.). Отдел математики, часть математического анализа (см. анализ).
Этимологический Словарь Русского Языка
Слово «алгебра» широко известно в русском языке уже с начала XVIII в.
Изначально использовалось в формах: «алгебраика», «алгебрум». Эти формы указывают на прямое заимствование из латинского. В европейских языках слово также восходит к позднелатинскому algebra – «алгебра».
Первоисточник – арабское al-gabr, где al – определительный член, gabr (от глагола gabara) – «вправление», «восстановление», «стеснение».
Обшее значение международного слова «алгебра» – «старейший раздел математики, изучающий свойства и отклонения величин, независимо от их конкретного числового значения».
Энциклопедический словарь
(араб.), часть математики, развивающаяся в связи с задачей о решении алгебраических уравнений. Решение уравнений 1-й и 2-й степеней известно еще с древности. В 16 в. итальянскими математиками найдены решения уравнений 3-й и 4-й степеней. К. Гауссом установлено (1799), что всякое алгебраическое уравнение n-й степени имеет n корней (решений), действительных или мнимых. В нач. 19 в. Н. Абель и Э. Галуа доказали, что решения уравнений степени выше 4-й, вообще говоря, нельзя выразить через коэффициент уравнения при помощи алгебраических действий. В современной алгебре изучается общая теория совокупностей, в которых определены алгебраические операции, аналогичные по своим свойствам действиям над числами. Такие операции могут выполняться, напр., над многочленами, векторами, матрицами и т. д.
Словарь Ожегова
АЛГЕБРА, ы, ж. Раздел математики, изучающий такие качества величин, к-рые вытекают из отношений между величинами и не зависят от их природы.
| прил. алгебраический, ая, ое.
Словарь Ефремовой
Энциклопедия Брокгауза и Ефрона
— А. вместе с арифметикой есть наука о числах и через посредство чисел — о величинах вообще. Не занимаясь изучением свойств каких-нибудь определенных, конкретных величин, обе эти науки исследуют свойства отвлеченных величин как таковых, независимо от того, к каким конкретным приложениям они способны. Различие между арифметикой и А. состоят в том, что первая наука исследует свойства данных, определенных величин, между тем как А. занимается изучением общих величин, значение которых может быть произвольное, а следовательно, А. изучает только те свойства величин, которые общи всем величинам независимо от их значений. Таким образом, А. есть обобщенная арифметика. Это подало повод Ньютону назвать свой трактат об А. «Общею арифметикой». Гамильтон, полагая, что, подобно тому, как геометрия изучает свойства пространства, А. изучает свойства времени, назвал А. «Наукою чистого времени» — название, которое Деморган предлагал изменить в «Исчисление последовательности». Однако такие определения не выражают ни существенных свойств А., ни исторического ее развития. А. можно определить как «науку о количественных соотношениях».
История А. Происхождение самого слова А. не вполне выяснено. По мнению большинства исследователей этого вопроса, слово А. происходит от арабских слов эль-джабер-эль-мокабела, т. е. учение о перестановках, отношениях и решениях, но некоторые авторы производят А. от имени математика Гебера, самое существование которого, однако, подвержено сомнению.
Первое дошедшее до нас сочинение, содержащее исследование алгебраических вопросов, есть трактат Диофанта, жившего в середине IV века. В этом трактате мы встречаем, например, правило знаков (минус на минус дает плюс), исследование степеней чисел и решение множества неопределенных вопросов, которые в настоящее время относятся к теории чисел. Из 13 книг, составлявших полное сочинение Диофанта, до нас дошло только 6, в которых решаются уже довольно трудные алгебраические задачи. Нам не известно о каких бы то ни было иных сочинениях об А. в древности, кроме утерянного сочинения знаменитой дочери Теона, Гипатии. В Европе А. снова появляется только в эпоху Возрождения и именно от арабов. Каким образом арабы дошли до тех истин, которые мы находим в их сочинениях, дошедших до нас в большом количестве, — неизвестно. Они могли быть знакомы с трактатами греков или, как думают некоторые, получить свои знания из Индии. Сами арабы приписывали изобретение А. Магоммеду-бен-Муза, жившему около середины IХ-го века, в царствование халифа Аль-Мамуна. Во всяком случае, греческие авторы были известны арабам, которые собирали древние сочинения по всем отраслям наук. Магоммед-Абульвефа перевел и комментировал сочинения Диофанта и других предшествовавших ему математиков (в Х веке). Но ни он, ни другие арабские математики не внесли много нового, своего в А. Они изучали ее, но не совершенствовали. Первым сочинением, появившимся в Европе после продолжительного пробела со времен Диофанта, считается трактат итальянского купца Леонардо, который, путешествуя по своим коммерческим делам на Востоке, ознакомился там с индийскими (ныне называемыми арабскими) цифрами и с арифметикой и А. арабов. По возвращении своем в Италию он написал сочинение, охватывающее одновременно арифметику и А. и отчасти геометрию. Однако сочинение это не имело большого значения в истории науки, ибо осталось малоизвестным и было открыто вновь только в середине прошлого столетия в одной флорентийской библиотеке. Между тем сочинения арабов стали проникать в Европу и переводиться на европейские языки. Известно, например, что старейшее арабское сочинение об А. Магоммеда бен-Музы было переведено на итальянский язык, но перевод этот не сохранился до нашего времени. Первый печатный трактат об А. есть «Summa de Arithmetica, Geometria, Proportioni et Proportionalita», написанное итальянцем Лукас де Бурго. Первое издание его вышло в 1494 г. и второе в 1523 г. Оно указывает нам, в каком состоянии находилась А. в начале XVI века в Европе. Здесь нельзя видеть больших успехов в сравнении с тем, что уже было известно арабам или Диофанту. Кроме решения отдельных частных вопросов высшей арифметики, только уравнение первой и второй степени решаются автором, и притом вследствие отсутствия символического обозначения все задачи и способы их решения приходится излагать словами, чрезвычайно пространно. Наконец, нет общих решений даже квадратного уравнения, а отдельные случаи рассматриваются отдельно, и для каждого случая выводится особый метод решения, так что самая существенная черта современной А. — общность даваемых ею решений — еще совершенно отсутствует в начале XVI века.
В 1505 году Сципион Феррео впервые решил один частный случай кубического уравнения. Это решение, однако, не было им опубликовано, но было сообщено одному ученику — Флоридо. Последний, находясь в 1535 году в Венеции, вызвал на состязание уже известного в то время математика Тарталья из Брешии и предложил ему несколько вопросов, для разрешения которых нужно было уметь решать уравнение третьей степени. Но Тарталья уже нашел раньше сам решение таких уравнений и, мало того, не только одного того частного случая, который был решен Феррео, но в двух других частных случаев. Тарталья принял вызов и сам предложил Флоридо также свои задачи. Результатом состязания было полное поражение Флоридо. Тарталья решил предложенные ему задачи в продолжение двух часов, между тем как Флоридо не мог решить ни одной задачи, предложенной ему его противником (число предложенных с обеих сторон задач было 30). Тарталья продолжал, подобно Феррео, скрывать свое открытие, которое очень интересовало Кардана, профессора математики и физики в Милане. Последний приготовлял к печати обширное сочинение об арифметике, алгебре и геометрии, в котором он хотел дать также решение уравнений 3-й степени. Но Тарталья отказывался сообщить ему о своем способе. Только когда Кардан поклялся над Евангелием и дал честное слово дворянина, что он не откроет способа Тартальи для решения уравнений и запишет его в виде непонятной анаграммы, Тарталья согласился после долгих колебаний раскрыть свою тайну любопытному математику и показал ему правила решений кубических уравнений, изложенные в стихах, довольно туманно. Остроумный Кардан не только понял эти правила в туманном изложении Тартальи, но и нашел доказательства для них. Невзирая, однако, на данное им обещание, он опубликовал способ Тартальи, и способ этот известен до сих пор под именем «правила Кардана».
Вскоре было открыто и решение уравнений четвертой степени. Один итальянский математик предложил задачу, для решения которой известные до той поры правила были недостаточны, а требовалось умение решать биквадратные уравнения. Большинство математиков считало эту задачу нерешимою. Но Кардан предложил ее своему ученику Луиджи Феррари, который не только решил задачу, но и нашел способ решать уравнения четвертой степени вообще, сводя их к уравнениям третьей степени. В сочинении Тартальи, напечатанном в 1546 году, мы также находим изложение способа решать не только уравнение первой и второй степени, но и кубические уравнения, причем рассказывается инцидент между автором и Карданом, описанный выше. Сочинение Бомбелли, вышедшее в 1572 г., интересно в том отношении, что рассматривает так называемый неприводимый случай кубического уравнения, который приводил в смущение Кардана, не могшего решить его посредством своего правила, а также указывает на связь этого случая с классическою задачей о трисекции угла.
В Германии первое сочинение об А. принадлежит Христиану Рудольфу из Иауера и появилось впервые в 1524 г. а затем вновь издано Стифелем, или Стифелиусом, в 1571 г. Сам Стифель и Шейбль, или Шейбелиус, независимо от итальянских математиков разработали некоторые алгебраические вопросы, и первому принадлежит введение знаков +, — и √ для сокращения письма.
В Англии первый трактат об А. принадлежит Роберту Рекорду, преподавателю математики и медицины в Кембридже. Его сочинение об А. называется «The Whetstone of Wit». Здесь впервые вводится знак равенства (=). Во Франции в 1558 году появилось первое сочинение об А., принадлежащее Пелетариусу; в Голландии Стевин в 1585 г. не только изложил исследования, известные уже до него, но и ввел некоторые усовершенствования в А. Громадные успехи сделала А. после сочинений Виета, который первый рассматривал уравнение всех степеней и показал способы для приблизительного нахождения корней каких бы то ни было алгебраических уравнений. Он же первый означал величины, входящие в уравнение буквами, и тем придал А. ту общность, которая составляет характеристическую особенность алгебраических исследований нового времени. Он же подошел весьма близко к открытию формулы бинома, найденной впоследствии Ньютоном, и, наконец, в его сочинениях можно даже встретить разложение отношения стороны квадрата, вписанного в круг, к дуге круга, выраженное в виде бесконечного произведения. Фламандец Альбер Жирар или Жерар, трактат которого об А. появился в 1629 г., первый ввел понятие мнимых величин в науку. Англичанин Герриот показал, что всякое уравнение может быть рассматриваемо как произведение некоторого числа множителей первого порядка, и ввел в употребление знаки > и Содержание А. Низшая А. Сюда включают обыкновенно следующие отделы: теорию простейших арифметических операций над алгебраическими величинами, решение уравнений первой и второй степени, теорию степеней и корней, теорию логарифмов и, наконец, теорию сочетаний.
К высшей А. относят теорию уравнений каких угодно степеней, теорию исключения, теорию симметрических функций корней уравнений, теорию подстановок и, наконец, изложение различных частных способов отделения корней уравнений, определения числа вещественных или мнимых корней данного уравнения с численными коэффициентами и решение по приближению или, когда это возможно, в точности уравнений каких угодно степеней.
Наконец, под названием новой А. известна в особенности в Англии теория инвариантов алгебраических форм.
Литература А. вообще (по отдельным вопросам см. под соответственными рубриками: Уравнения, Инварианты, Определители, и др.): Древнейшие авторы (до XVIII века): Diophantus, «Arithmeticorum libri sex», около (300); (первое изд. 1575; лучшее 1670); Lucas Paciolus или De Burgo (1494); Rudolff, «Algebra» (1522); Stifelius, «Arithmetica Integra» (1544); Cardanus, «Ars Magna quam vulgo Cossam vocant» (1545); Tartalea (Tartaglia), «Quesiti ed Inventioni, diverse» (1546); Scheubelius, «Algebra Compediosa» (1551); Recorde, «Whetstone of Wit» (1557); Peletarius, «De Occulta parte Numerorum» (1558); Buteo, «De Logistica» (1559); Ramus, «Aritmeticae Libri duo et totidem Algebrae» (1560); Pedro Nuguez (Nonnius), «Libre de Algebra» (1567); Josselin, «De Occulta Parte Mathematicarum» (1576); Bernard Solignac, «Arithmeticae Libri II et Algebrae totidem» (1580); Stevinus, «Arithmetique etc. et aussi l’Algébre» (1585); Vieta, «Opera Mathematica» (1600); Folinus, «Algebra sive liber de Rebus Occultis» (1619); Bachet, «Diophantus cum commentariis» (1621); Albert Girard, «Invention Nouvelle en Algébre» (1629); Ghetaldus, «De Resolutione et Compositione Mathematica» (1630); Harriot, «Artis Analyticae Proxis» (1631); Oaghtreed, «Clavis Mathematica» (1631); Herigonis, «Cursu Mathematicus» (1634); Cavalerius, «Geometria Indivisibilis Continuarum etc.» (1635); Descartes, «Geometria» (1637); Roberval, «De Recognitione Aequationum (1640); De Billy, Nova Geometricae clavis Algebra (1643); Renoldius, Opus Algebraicum» (1644); Wallis, «Arithmetica Infinitarum, Algebra» (1655); Newton (Opera) (1666); Gregory, «Exercitationes Geometrical» (1663); Mercator, «Logarithmotecnia» (1678); Barrow, «Lectiones geometrical» (1669) Prescot, «Nouveaux élements de Mathématique» (1675); Leibniz (Opera) (1677); Fermat (1679); Tschienhausen (1683); Rolle, «Une Mé thode etc.» (1690). XVIII и начала XIX века: Abel, Bernoulli, Budan, Clairault, Galois, Gauss, Horer, Lagrange, Landen, Legendre, Lhuillier, Malfatti, De Moivre, Nicole, S’Gravesande, Simpson, Stirling, Vandermonde. Учебники: Bertrand, De Morgan, Serret, Todhunter. На русском языке: «Элементарная алгебра»: Давыдов, Краевич. Высшая А. Сохоцкий (СПб., 1882).