Кто такой нано врач

Наномедицина

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Содержание

Становление наномедицины

Новое междисциплинарное направление медицинской науки в настоящее время находится в стадии становления. Её методы только выходят из лабораторий, а большая их часть пока существует только в виде проектов. Однако большинство экспертов полагает, что именно эти методы станут основополагающими в XXI веке. Так, например, Национальные институты здравоохранения включили наномедицину в пятёрку самых приоритетных областей развития медицины в XXI веке, а Национальный институт рака США собирается применять достижения наномедицины при лечении рака. Ряд зарубежных научных центров уже продемонстрировали опытные образцы в областях диагностики, лечения, протезирования и имплантирования.

Достижения наномедицины станут широко доступны по разным оценкам только через 40—50 лет. Однако целый ряд последних открытий, разработок и инвестиций в наноотрасли привёл к тому, что всё больше аналитиков сдвигают эту дату на 10—15 лет в сторону уменьшения.

Уже сейчас наномедицина — крупная отрасль, в которой продажи достигли 6,8 миллиардов долларов (2004 год). В этой отрасли работают более чем 200 компаний, в которые инвестируется не менее 3,8 миллиардов долларов ежегодно. [4]

Современные наномедицинские технологии

Адресная доставка лекарств к больным клеткам позволяет медикаментам попадать только в больные органы, избегая здоровые, которым эти лекарства могут нанести вред. Например, лучевая терапия и химиотерапевтическое лечение уничтожая больные клетки, губит и здоровые. Решение этой проблемы подразумевает создание некоторого «транспорта» для лекарств, варианты которого уже предложены целым рядом институтов и научных организаций.

Новые бактерицидные средства создаются на основе использования полезных свойств ряда наночастиц. Так, например, применение серебряных наночастиц возможно при очистке воды и воздуха, или при дезинфекции одежды и спецпокрытий.

Разрабатываемые технологии

Медицинский наноробот

Лечение будет заключаться во введении нанороботов в человеческое тело для дальнейшего анализа ситуации и принятия решения о выборе метода лечения. Врач управляет нанороботами, получая информацию от активных нанороботов.

Источник

ПЭТ-КТ проследила за движением роя нанороботов в живом организме

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Распределение радиоизотопных меток после внутривенного введения нанороботов

Hortelao et al. / Science Robotics, 2021

Испанские ученые впервые количественно проследили за распространением нанороботов с ферментным приводом в живом организме. Выяснилось, что в отличие от неактивных аналогов, они склонны самоорганизовываться в форму роя с равномерным распределением частиц. Исследование опубликовано в журнале Science Robotics.

Нанороботы представляют собой перспективную область медицинских разработок, одно из основных направлений их экспериментального применения — прицельная доставка лекарств в злокачественные опухоли. В отличие от пассивных нанопрепаратов, лишь 0,7 процента дозы которых проникает в новообразование, активно движущиеся наночастицы способны хорошо преодолевать биологические преграды, такие как слизь, клеточные мембраны и оболочки искусственных органоидов. Для придания нанороботам движения применяют различные подходы, например, воздействие внешнего магнитного поля или жгутики, схожие с бактериальными. Наиболее перспективно на данный момент использование каталитической энергии ферментов, «топливом» для которых служат естественные вещества организма.

Отдельную проблему в разработке терапевтических нанороботов представляет отслеживание их движения и распространения в живом организме. Для этих целей пытались применять магнито-резонансную и фотоакустическую компьютерную томографии, однако из-за недостаточной чувствительности эти методы дают лишь качественную, но не количественную оценку.

Чтобы преодолеть эти ограничения, сотрудники Каталонского института биоинженерии, исследовательской организации CIC biomaGUNE и Барселонского автономного университета под руководством Самуэля Санчеса (Samuel Sánchez) и Джорди Льопа (Jordi Llop) решили воспользоваться методом позитронно-эмиссионной томографии, совмещенной с компьютерной томографией (ПЭТ-КТ). Поскольку эта методика основана на регистрации гамма-излучения от радиоизотопных меток, она обладает чрезвычайно высокой чувствительностью, которая не зависит от типа исследуемых органов и тканей, давая полную количественную картину распределения меченого вещества в реальном времени.

Для эксперимента исследователи создали нанороботов из мезопористого кремния с меченым фтором-18 ферментом уреазой, разлагающим мочевину, в качестве «двигателя» и мечеными йодом-124 золотыми наночастицами в качестве «полезной нагрузки». Движение таких нанороботов происходит за счет асимметричного испускания ионов карбоната и аммония, образующихся при распаде мочевины.

Источник

Наномедицина: роботы внутри нас

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Валерий Спиридонов, для РИА Новости

Валерий Спиридонов, первый кандидат на пересадку головы, рассказывает о том, как наномашины помогут человеку стать сильнее, здоровее и приобрести новые способности.

— В середине 1990-х годов среди школьников был популярен фантастический мультфильм «Волшебный школьный автобус». Часть его серий была посвящена уменьшению автобуса с пассажирами до наноуровня и его проникновению в организм человека для борьбы с вирусами и бактериями «лицом к лицу».

Тогда это казалось мне всего лишь интересной выдумкой. Но спустя пару десятилетий мир настолько изменился, что лечение болезней на уровне молекул уже воспринимается как настоящая и завтрашняя реальность.

Открытие наномира

Фундаментом для формирования наномедицины послужили молекулярная химия и физика. Первые упоминания об исследованиях на уровне атомов встречаются в работах Исаака Ньютона. Еще в 1704 году Ньютон выражает надежду в своей книге Opticks, что микроскопы будущего помогут исследовать «тайны корпускул». Микроскопы же того времени еще не позволяли изучать образцы материи на наноуровне.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Пока наномедицина является лишь экспериментальной областью науки, но уже сегодня начинают появляться первые образцы лекарств и терапий, которые врачи применяют для лечения реальных болезней.

Врачи-нанороботы

Взамен традиционных таблеток и инъекций приходят крошечные роботы, сопоставимые по размерам с молекулами. Когда такие машины попадают в организм, они проводят диагностику, находят причину развития болезни и отправляются к тому органу, который нуждается в помощи и очередной порции лекарства.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Существует несколько разновидностей таких машин — часть из них убивает раковые клетки и бактерии, другие занимаются анализами и следят за состоянием организма, а третьи — проводят настоящие хирургические операции на молекулярном уровне.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Создание таких медицинских роботов оказалось крайне сложной задачей — ученым пришлось понять, как можно научить их ориентироваться в пространстве, как обеспечить энергией и как заставить двигаться по прямой линии.

К примеру, движением таких роботов сегодня ученые управляют при помощи ультразвука, магнитных и электрических полей, тепла и более экзотических форм электромагнитных и иных волн.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Такие роботы в будущем смогут решать самые разные задачи, начиная с удаления тромбов и холестериновых бляшек и заканчивая «сшиванием» сосудов и остановкой кровотечений.

Робот-хирург

Необходимость разработки роботов-хирургов продиктована прежде всего дефицитом квалифицированных специалистов. Мини-хирург Smart Tissue (STAR), созданный в 2016 году группой ученых из университета Джона Хопкинса (США), провел ряд успешных операций на живых свиньях по сшиванию участков тонкого кишечника.

STAR вводится пациенту через рот и проводит операции без единого разреза на коже. Он получает данные от системы флуоресценции, печати изображений в 3D и датчика давления. План же самой операции программируется через компьютер.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

ДНК-нанороботы

Помимо починки отдельных клеток, сосудов и тканей, нанороботы смогут и устранять генетические нарушения, напрямую редактируя структуру нитей ДНК.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Пока такие машины только разрабатываются, и ученым из Калифорнийского технологического института недавно удалось создать наноробота, способного распознавать отдельные нити ДНК и использовать их в качестве ориентиров при сортировке микроскопических грузов. В будущем подобные машины смогут распознавать поврежденные участки генов и заменять их на «правильные» последовательности генетических букв-нуклеотидов.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Кроме того, химики из Манчестерского университета разработали первого в мире молекулярного робота, способного собирать другие молекулы. Он состоит из 150 атомов углерода, водорода, кислорода и азота, и его более продвинутые версии могут в будущем послужить основой для целых молекулярных фабрик и сборочных линий.

Регенерация тканей

В будущем такие роботы смогут не только «чинить» организм, но и защищать его от повреждений. Недавно ученым из Гарварда удалось создать наноткань, способную восстанавливать свою структуру после серьезных повреждений.

Кроме того, нанотехнологии могут дать человеку способность регенерировать свои собственные клетки и ткани.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Недавно ученые из университета Огайо создали наномашину, способную доставлять в клетки специальный набор генов и белков, который «перепрограммирует» их и заставляет превратиться в стволовые клетки, способные делиться, залечивать раны и восстанавливать поврежденные органы и ткани.

Диагностика

Другое важное направление — использование наночипов в диагностике заболеваний. Наноимпланты, недавно созданные учеными, могут собирать сведения о состоянии здоровья пациента и отправлять данные на компьютер, находясь внутри его тела. К примеру, наночип, находящийся в мозге, может анализировать уровень его активности и предпринимать меры при наступлении эпилепсии.

Кроме того, подобные чипы смогут проникать внутрь плода в утробе матери и проводить сверхраннюю диагностику различных наследственных болезней, которая поможет родителям понять, как можно спасти жизнь ребенка или избавить его от проблем в тот момент времени, когда такое вмешательство еще возможно.

Управление через смартфон

Пока такими роботами можно управлять, находясь в специализированных лабораториях и клиниках. В будущем инженеры создадут более удобные системы контроля, которые позволят всем людям «дирижировать» работой таких наноботов, используя смартфон или другой гаджет. Пациент сможет получать отчеты о своем состоянии, вносить изменения в работу наномашин и отслеживать статистику по эффективности лечения.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врачКто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Безграничный и удивительный наномир открывает свои тайны благодаря новейшим достижениям науки. Предвкушая грандиозные возможности для человечества, ученые приближают наступление новой эпохи наномедицины.

Наномедицина позволит добиться максимального качества медицинской помощи с моментальным реагированием на проблемы организма и их предупреждением. При этом не будут страдать другие органы и ткани и процедуры станут безболезненными. И таким образом, как мне кажется, удастся существенно повысить продолжительность и качество жизни людей. А возможно, даже приблизиться к самой невероятной цели — бессмертию человека.

Источник

Как будут работать нанороботы?

Представьте, что идете к врачу за лечением постоянной простуды. Вместо того чтобы дать вам таблетку или сделать укол, врач направляет вас к специальной медицинской команде, которая имплантирует крошечного робота в вашу кровь. Робот распознает причину вашей болезни, отправляется в соответствующую систему и обеспечивает дозу лекарства непосредственно в зараженной зоне.

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Вы удивитесь, но мы не так уж и далеки от устройств типа такого, которые уже отчасти используются в медицине. Они называются нанороботами, и инженеры по всему миру работают над ними, чтобы они в конечном итоге могли излечить все: от гемофилии до рака.

Как вы можете себе представить, задачи, стоящие перед инженерами, колоссальны. Жизнеспособный наноробот должен быть небольшим и достаточно гибким, чтобы перемещаться по человеческой системе кровообращения, невероятно сложной сети артерий и вен. Робот также должен обладать возможностью переносить медикаменты или миниатюрные инструменты. Если предположить, что наноробот не должен оставаться в теле пациента навсегда, он также должен уметь выходить из него.

В этой статье мы узнаем о потенциальном применении нанороботов, различных способов навигации нанороботов по нашему телу, об инструментах, которые они будут использовать для лечения пациентов, и о прогрессе, который двигают команды по всему миру.

Вот два бота, принимать на ночь вместе с едой

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Несколько инженеров, ученых и врачей полагают, что возможные применения нанороботов практически не ограничены. Среди наиболее вероятных применений:

Лечение артериосклероза. Артериосклероз относится к состоянию, когда вдоль стенок артерий выстраиваются бляшки. Нанороботы могут помочь, срезая бляшки, которые затем будут увлекаться кровотоком.

Разрушение тромбов. Тромбы могут вызывать различные осложнения, от смерти мышцы до инсульта. Нанороботы могут отправиться к тромбу и разбить его. Это применение является наиболее рискованным для нанороботов — робот должен иметь возможность снять блокаду, не уронив ни малейшего кусочка в кровоток, который затем мог бы направить его в другую часть тела и причинить еще больше вреда. Робот должен быть при этом достаточно мал, чтобы не заблокировать сам кровоток.

Борьба с раком. Врачи надеются использовать нанороботов для лечения онкологических больных. Роботы могут либо атаковать непосредственно опухоли с помощью лазеров, микроволн или ультразвука, либо стать частью химиотерапии, обеспечив доставку лекарств непосредственно к месту рака. Врачи считают, что поставка небольших, но точных доз медикаментов пациенту сведет к минимуму побочные эффекты и потери лекарственной эффективности.

Помощь тромбоцитам. Один из конкретных видов нанороботов — это клоттоцит, или искусственный тромбоцит. Клоттоцит несет небольшую сетку, которая превращается в липкую мембрану при контакте с плазмой крови. По словам Роберта Фрейтаса, автора идеи клоттоцитов, искусственное свертывание может проходить до 1000 раз быстрее, чем работает природный механизм свертывания организма. Врачи могут использовать клоттоциты для лечения больных гемофилией или пациентов с серьезными открытыми ранами.

Удаление паразитов. Нанороботы могут вести микровойну с бактериями и мелкими паразитирующими организмами в теле пациента. Чтобы уничтожить всех паразитов, может понадобиться несколько нанороботов, работающих вместе.

Подагра. Подагра — это состояние, при котором почки теряют способность удалять отходы расщепления жиров в кровотоке. Эти отходы иногда кристаллизуются в точках вблизи суставов вроде коленей и лодыжек. Люди, страдающие от подагры, испытывают интенсивную боль в этих суставах. Нанороботы могут разбить кристаллические структуры в суставах, обеспечивая облегчение от симптомов, хотя и не смогут полностью остановить процесс их формирования.

Разрушение камней в почках. Камни в почках могут быть очень болезненными — чем больше камень, тем сложнее ему выйти. Врачи разбивают большие камни в почках с помощью ультразвуковых частот, но не всегда эффективно. Нанороботы могут разбить камни в почках, используя небольшой лазер.

Очистка ран. Нанороботы могут помочь очистить рану от грязи, снизив вероятность заражения. Они будут особенно полезны в случае колотых ран, которые с трудом поддаются лечению с использованием более традиционных методов.

Как нанороботы будут перемещаться по кровеносной системе?

Навигация нанороботов

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Внешние навигационные системы могут использовать множество различных методов, чтобы доставить наноробота в нужное место. Один из таких методов — использование ультразвуковых сигналов для обнаружения местоположения наноробота и направления его в нужное место назначения. Врачам пришлось бы отправлять ультразвуковые сигналы в тело пациента. Сигналы проходили бы через тело и отражались обратно к источнику сигналов. Нанороботы могут излучать импульсы ультразвуковых сигналов, которые врачи могли бы регистрировать, используя специальное оборудование с ультразвуковыми датчиками.

Используя магнитно-резонансную томографию (МРТ), врачи могли бы определять местонахождение наноробота и отслеживать его, обнаруживая его магнитное поле. Врачи и инженеры из Политехнической школы Монреаля несколько лет назад показали, что могли бы обнаружить, отследить, управлять и даже передвигать наноробота с использованием МРТ. Они проверили свои выводы, маневрируя небольшим количеством малых магнитных частиц в артериях свиньи, используя специальное программное обеспечение на устройстве МРТ. Поскольку за рубежом во многих больницах есть МРТ, это может стать промышленным стандартом — больницам не придется инвестировать в дорогостоящие непроверенные технологии.

Врачи также могут отслеживать нанороботов путем введения радиоактивного красителя в кровоток пациента. Затем использовали бы флюороскоп или аналогичное устройство для обнаружения радиоактивного красителя по мере его движения в кровотоке. Сложные трехмерные изображения показали бы, где находятся нанороботы. В качестве альтернативы нанороботы сами могут распылять радиоактивную краску, оставляя след.

Другие методы обнаружения нанороботов включают использование рентгеновских лучей, радиоволн, микроволн или тепла. На данный момент наши технологии, использующие эти методы на наноразмерных объектах, ограничены, так что гораздо более вероятно, что будущие системы будут полагаться на другие методы.

Бортовые системы, или внутренние датчики, также могут сыграть большую роль в навигации. Нанороботы с химическими сенсорами могли бы обнаруживать и следовать по следам конкретных химических веществ для достижения правильного местоположения. Спектроскопический датчик позволил бы нанороботу забирать пробы и образцы окружающей ткани, анализировать их и идти дальше.

Как бы это странно не звучало, нанороботы могут быть оснащены миниатюрной телекамерой. Оператор мог бы управлять устройством во время просмотра живого видео, буквально вручную проводя корабль сквозь тело. Системы видеонаблюдения довольно сложны, поэтому понадобится по меньшей мере несколько лет, прежде чем нанотехнологи смогут создать надежную систему, которую можно будет поместить внутри крошечного робота.

Питание нанороботов

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Нанороботы могут получать энергию непосредственно из кровотока. Наноробот с установленными электродами может сформировать батарею на основе электролитов, найденных в крови. Другой вариант заключается в создании химических реакций с кровью для превращения ее в энергию. Наноробот мог бы нести небольшой запас химических веществ, которые станут источником топлива в сочетании с кровью.

Наноробот может использовать тепло тела для выработки энергии, но должен быть градиент температур для управления этим процессом. Выработка энергии может быть результатом эффектом Зеебека. Эффект Зеебека возникает, когда два проводника из разных металлов соединены в двух точках, которые обладают разной температурой. Металлические проводники становятся термопарой, то есть создают напряжение, когда стыки находятся в разных температурах. Поскольку трудно рассчитать температурный градиент в теле, едва ли мы увидим нанороботов, использующих тепло тела для генерации энергии.

Поскольку есть возможность создания батарей, достаточно малых для размещения в нанороботах, они обычно не рассматриваются в качестве жизнеспособного источника питания. Проблема заключается в том, что батареи могут хранить относительно небольшое количество энергии, напрямую связанное с их размером и весом, и, таким образом, очень маленькая батарея обеспечит лишь малую часть необходимой нанороботу энергии. Более вероятным кандидатом является конденсатор, который имеет немного лучшее соотношение мощности к весу.

Инженеры работают над созданием небольших конденсаторов, которые смогут стать источником питания для нанороботов.

Внешние источники питания включают системы, когда нанороботы либо привязаны к внешнему миру, либо контролируются без физического поводка. Привязанная система потребует провода между наноботом и источником питания. Провод должен быть достаточно прочным, но также без проблем проходить сквозь тело человека, не нанося повреждений. Физический трос мог бы поставлять электроэнергию с помощь электричества или оптики. Оптические системы передают свет через оптоволокно, а он затем преобразуется в электричество на борту робота.

Внешние системы, которые не используют провода, могли бы полагаться на микроволны, ультразвуковые сигналы или магнитные поля. Микроволны наименее вероятны к использованию, поскольку могут повредить ткань пациента путем нагревания. Наноробот с пьезоэлектрической мембраной сможет подхватывать ультразвуковые сигналы и преобразовывать их в электричество. Системы, использующие магнитные поля, вроде тех врачей из Монреаля, о которых мы упоминали выше, могут также напрямую управлять нанороботом или индуцировать электрический ток в закрытой проводящей петле внутри робота.

Передвижение нанороботов

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Некоторые ученые наблюдают за микроорганизмами в поисках вдохновения. Парамеция может двигаться через среду, используя крошечные хвостики — реснички. Вибрируя ресничками, парамеция может плавать в любом направлении. Подобно ресничкам работают жгутики, более длинные хвостовые структуры. Организмы бьют жгутиками вокруг, чтобы двигаться в разных направлениях.

Израильские ученые создали микроробота, который всего несколько миллиметров в длину и использует маленькие придатки для захвата и ползания по кровеносным сосудам. Ученые манипулируют его конечностями, создавая магнитное поле за пределами тела пациента. Магнитное поле заставляет конечности робота вибрировать и толкать его по кровеносным сосудам. Ученые отмечают, что, поскольку вся энергия для наноробота берется из внешних источников, нет никакой необходимости оснащать механизм внутренним источником питания. Они надеются, что относительно простой дизайн позволит им сделать в скором времени еще более мелких роботов.

Другие устройства звучат еще более экзотически. Одно использует конденсаторы для генерации магнитных полей, которые бы протягивали проводящие жидкости из одного конца электромагнитного насоса и выстреливали бы их обратно. Наноробот двигался бы как реактивный самолет. Миниатюрные струйные насосы могут даже использовать плазму крови, чтобы подталкивать робота вперед, но, в отличие от электромагнитного насоса, в этих должны быть движущиеся части.

Другой потенциальный способ, которым могли бы передвигаться роботы — использование вибрирующей мембраны. Поочередно затягивая и ослабляя напряженность мембраны, нанороботы могли бы генерировать небольшую тягу. На наноуровне этой тяги может быть достаточно, чтобы стать основным источником движения.

Крошечные инструменты

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

Полость для медикаментов. Это пустая секция внутри наноробота, которая будет содержать небольшие дозы лекарств или химических веществ. Робот может высвобождать лекарства непосредственно в месте травмы или инфекции. Нанороботы также могут нести химические вещества, используемые в химиотерапии для лечения рака непосредственно на месте. Хотя количество лекарств будет относительно незначительным, применение их непосредственно к раковой ткани может быть более эффективным, чем традиционная терапия, которая опирается на систему кровообращения как способ перевозки химических веществ в теле пациента.

Зонды, ножи и стамески. Чтобы удалять блокады и бляшки, нанороботам нужно будет что-то, что сможет хватать и рушить. Также, возможно, понадобится устройство для разрушения тромбов на мелкие кусочки. Если часть тромба вырвется и попадет в кровоток, она может вызвать массу проблем.

Лазеры. Крошечные мощные лазеры могут выжечь дотла вредные материалы вроде артериальных бляшек, раковых клеток или тромбов в крови. Лазеры буквально испарят это все.

Две самые большие проблемы, которые беспокоят ученых, — это как повысить эффективность этих миниатюрных инструментов и сделать их безопасными. Например, создать небольшой лазер, который будет достаточно мощным для испарения клеток, достаточно сложная задача, но сделать его безопасным для окружающей среды — еще сложнее. В то время как многие научные группы разработали нанороботов достаточно мелких, чтобы они могли попасть в кровеносную систему, это только первые шаги к созданию реально применяемых нанороботов.

Нанороботы: сегодня и завтра

Кто такой нано врач. Смотреть фото Кто такой нано врач. Смотреть картинку Кто такой нано врач. Картинка про Кто такой нано врач. Фото Кто такой нано врач

В будущем нанороботы могут совершить революцию в медицине. Врачи смогут лечить все, от сердечно-сосудистых заболеваний до рака, при помощи крошечных роботов, по размерам сопоставимых с бактериями, намного меньших, чем нынешние нанороботы. Некоторые считают, что полуавтономные нанороботы уже вот-вот будут доступны — доктора смогут имплантировать роботов, способных патрулировать человеческое тело и реагировать на любые проблемы. В отличие от экстренного лечения, эти роботы будут оставаться в теле пациента навсегда.

Другое потенциальное применение нанороботов в будущем — укрепление нашего тела, повышение иммунитета, увеличение силы или даже улучшение интеллекта. Сможем ли мы в один прекрасный день обнаружить тысячи микроскопических роботов, плывущих по нашим венам и вносящим коррекции и изменения в наши разрушенные тела? С нанотехнологиями, похоже, все будет возможно.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *