Силовая электроника что это такое
Что такое силовая электроника
В этой статье поговорим о силовой электронике. Что такое силовая электроника, на чем она базируется, какие дает преимущества, и каковы ее перспективы? Остановимся на составных частях силовой электроники, рассмотрим кратко, какие они бывают, чем отличаются между собой, и для каких применений удобны те или иные типы полупроводниковых ключей. Приведем примеры приборов силовой электроники, применяемой в повседневной жизни, на производстве и в быту.
За последние годы устройства силовой электроники позволили совершить серьезный технологический рывок в энергосбережении. Силовые полупроводниковые приборы, благодаря их гибкой управляемости, позволяют эффективно преобразовывать электроэнергию. Массогабаритные показатели и КПД, достигнутые сегодня, уже вывели преобразовательные устройства на качественно новый уровень.
Во многих отраслях применяются устройства плавного пуска, регуляторы скорости, источники бесперебойного питания, работающие на современной полупроводниковой базе, и показывающие высокую эффективность. Все это силовая электроника.
Управление потоками электрической энергии в силовой электронике осуществляется при помощи полупроводниковых ключей, которые заменяют собой механические коммутаторы, и управление которыми можно осуществлять по требуемому алгоритму с целью получить нужную среднюю мощность и точное действие рабочего органа того или иного оборудования.
Так, силовая электроника применяется на транспорте, в добывающей отрасли, в сфере связи, на многих производствах, да и ни один мощный бытовой прибор не обходится сегодня без входящих в его конструкцию силовых электронных блоков.
Главными кирпичиками силовой электроники являются именно полупроводниковые ключевые компоненты, способные с разной скоростью, вплоть до мегагерц, размыкать и замыкать цепь. Во включенном состоянии сопротивление ключа составляет единицы и доли ома, а в выключенном — мегаомы.
Управление ключом не требует много мощности, а потери на ключе, возникающие в процессе коммутации, при грамотно спроектированном драйвере, не превышают одного процента. По этой причине КПД силовой электроники оказывается высоким по сравнению со сдающими свои позиции железными трансформаторами и механическими коммутаторами типа обычных реле.
Силовыми электронными приборами называются приборы, в которых действующий ток больше или равен 10 амперам. При этом в качестве ключевых полупроводниковых элементов могут быть: биполярные транзисторы, полевые транзисторы, IGBT-транзисторы, тиристоры, симисторы, запираемые тиристоры, и запираемые тиристоры с интегрированным управлением.
Эти электронные кирпичики применяются как в мощных промышленных установках, так и в бытовых электроприборах. Индукционная печь на пару мегаватт или домашний отпариватель на пару киловатт — и в том и в другом есть полупроводниковые силовые ключи, просто оперирующие с разной мощностью.
Так, силовые тиристоры работают в преобразователях мощностью более 1 МВА, в цепях электроприводов постоянного тока и высоковольтных приводов переменного тока, используются в установках компенсации реактивной мощности, в установках индукционной плавки.
Запираемые тиристоры управляются более гибко, они служат для управления компрессорами, вентиляторами, насосами мощностью в сотни КВА, а потенциально возможная мощность коммутации превышает 3 МВА. IGBT-транзисторы позволяют реализовывать преобразователи мощностью до единиц МВА различного назначения, как для управления двигателями, так и для обеспечения бесперебойного питания и коммутации больших токов во многих статических установках.
Полевые MOSFET-транзисторы отличаются превосходной управляемостью на частотах в сотни килогерц, что значительно расширяет сферу их применяемости в сравнении с IGBT-транзисторами.
Для пуска и управления двигателями переменного тока оптимальны симисторы, они способны работать на частотах до 50 кГц, а для управления требуют меньше энергии, чем IGBT-транзисторам.
Сегодня IGBT-транзисторы по максимальному коммутируемому напряжению достигают 3500 вольт, а потенциально возможно 7000 вольт. Эти компоненты могут вытеснить биполярные транзисторы уже в ближайшие годы, и на оборудовании до единиц МВА будут применяться именно они. Для маломощных преобразователей более приемлемыми останутся MOSFET-транзисторы, а для более 3 МВА — запираемые тиристоры.
По прогнозам аналитиков, большая часть силовых полупроводников в будущем будет иметь модульное исполнение, когда в одном корпусе располагается от двух до шести ключевых элементов. Применение модулей позволяет снизить массу, уменьшить габариты и себестоимость оборудования, в котором они будут применяться.
Для IGBT-транзисторов прогрессом будет увеличение токов до 2 кА при напряжении до 3,5 кВ и рост рабочих частот до 70 кГц с упрощением схем управления. В одном модуле смогут содержаться не только ключи и выпрямитель, но и драйвер, и схемы активной защиты.
Выпускаемые в последние годы транзисторы, диоды, тиристоры, уже значительно улучшили свои параметры, такие как ток, напряжение, быстродействие, и прогресс не стоит на месте.
Для более качественного преобразования переменного тока в постоянный применяют управляемые выпрямители, позволяющие плавно изменять выпрямленное напряжение в диапазоне от нуля до номинального.
Сегодня в системах возбуждения электроприводов постоянного тока у синхронных двигателей служат главным образом тиристоры. Сдвоенные тиристоры — симисторы, имеют всего один управляющий электрод для двух соединенных встречно-параллельно тиристоров, что делает управление еще более простым.
Для осуществления обратного процесса, преобразования постоянного напряжения в переменное применяют инверторы. Независимые инверторы на полупроводниковых ключах дают на выходе частоту, форму и амплитуду, определяемою электронной схемой, а не сетью. Инверторы изготавливают на базе различных типов ключевых элементов, но для высоких мощностей, более 1МВА, опять же на первое место выходят инверторы на IGBT-транзисторах.
В отличие от тиристоров, IGBT-транзисторы дают возможность более широко и более точно формировать ток и напряжение на выходе. Маломощные автомобильные инверторы используют в своей работе полевые транзисторы, которые при мощностях до 3 кВт прекрасно справляются со своей задачей, преобразовывая постоянный ток аккумулятора с напряжением 12 вольт сначала в постоянное, посредством высокочастотного импульсного преобразователя, работающего на частоте от 50кГц до сотен килогерц, затем — в переменное 50 или 60 Гц.
Для перевода тока одной частоты в ток другой частоты применяют полупроводниковые преобразователи частоты. Раньше это делалось исключительно на базе тиристоров, которые обладали не полной управляемостью, приходилось проектировать сложные схемы принудительного запирания тиристоров.
Использование ключей типа полевых MOSFET и IGBT-транзисторов облегчает проектирование и реализацию преобразователей частоты, и можно прогнозировать, что в перспективе от тиристоров, особенно в приборах малой мощности, откажутся в пользу транзисторов.
Для реверсирования электроприводов по прежнему применяются тиристоры, достаточно иметь два комплекта тиристорных преобразователей для обеспечения двух разных направлений тока без необходимости переключений. Так работают современные бесконтактные реверсивные пускатели.
Надеемся, что наша краткая статья была для вас полезной, и теперь вы знаете, что такое силовая электроника, какие элементы силовой электроники применяются в силовых электронных приборах, и как велик потенциал силовой электроники для нашего будущего.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Силовая электроника
Силовая электроника это применение обычной электроники для управления и преобразования электрической мощностью.Это относится также к предмету исследования в электронной и электротехнической техники, которая занимается проектированием, управлением, вычислений и интеграции нелинейных, нестационарных энергетических обработки электронных систем с быстрыми динамики.
Первые высокомощные электронные приборы были на основе ртутных клапанов.В современных системах преобразование выполняется с помощью полупроводниковых переключающих устройств, таких как диоды, тиристоры и транзисторы. В отличие от электронных систем, связанных с передачей и обработкой сигналов и данных, в области силовой электроники обрабатывается значительное количество энергии. AC / DC преобразователь (выпрямитель) является наиболее типичным устройтсвом силовой электроники, находящим свое применение во многих потребительских электронных устройствах, например, телевизоры, персональные компьютеры, зарядные устройства и т.д. Диапазон мощности, как правило, от нескольких десятков ватт до нескольких сотен ватт. В промышленности распространены приводы с переменной скоростью (ПЧ), которые используется для управления асинхронным двигателем.Диапазон мощности ПЧ начинается с нескольких сотен ватт и заканчивается в десятки мегаватт.
Системы преобразования энергии могут быть классифицированы в соответствии с типом мощности входа и выхода:
История
Силовая электроника началось с разработки ртутного выпрямителя, который был изобретен Питером Купером Хевиттом в 1902 году. Он использовался для преобразования переменного тока (AC) в постоянный ток (DC). С 1920-х годов продолжались исследования применения ртутных дуговых клапанов передачи электроэнергии. Уно Ламм разработали ртутный клапан пригодный для высокого напряжения постоянного тока силовой передачи.
К 1960 улучшенная скорость переключения биполярных транзисторов позволила создать высокочастотные импульсные преобразователи. В 1976 году MOSFETы стали коммерчески доступны. В 1982 году был введен биполярный транзистор с изолированым затвором(IGBT).
Устройства
Возможности и экономия мощности силовой электроники определяется доступными активными устройствами. Их характеристики и ограничения являются ключевыми элементами в проектировании систем силовой электроники.
Силовые электронные устройства могут быть использованы как переключатели, или в качестве усилителей.[3] Идеальный переключатель либо открыт, либо закрыт, и поэтому неи потерь мощости. В отличие от этого, в случае усилителя, текущий через устройство непрерывно изменяется в соответствии с входным током. Напряжение и ток на клеммах устройства соответствуют нагрузке линии, и рассеиваемая мощность внутри устройства является большей по сравнению с мощностью на нагрузке.
Устройства, такие как диоды проводят, когда подано прямое напряжение. Силовые устройства, такие как кремневые выпрямители и тиристоры позволяют управлять проводимостью, но нуждаются в периодическом обращении напряжения, для запирания. Устройства, такие как управляемные тиристоры, полевые транзисторы и MОПы обеспечивает полный контроль переключения и могут быть включены или выключены независимо от тока протекающего через них. Транзисторные устройства также позволяют пропорциональное усиление, но это редко используется для систем более чем несколько сотен ватт.
Виды полупроводниковых приборов
Инверторы
Инверторы преобразуют сигнал постоянного тока в переменный. Могут быть разделены на две категории: Автономные инверторы напряжения и автономные инверторы тока. Превые названы так из-за того, что сигналом выхода у них является напряжение. С другой стороны, у АИТ выходом являтся сигнал тока.
Будучи статическим преобразователем, инвертор работает благодоря комутации ключей, которые обычно являются полностью управляемыми полупроводниковыми элементами. Выходной сигнал состоит из множества дискретных значений, которые изменяются очень быстро. Способность производить около-синусоидальный сигнал вблизи основной частоты осуществяется благодаря заданию длительности импульсов включенного и отключенного состояния ключа в период модуляции. Распространенные способы модуляции включают: ШИМ (Широтно-импульсная), векторная и по гармоникам.
Текущие инверторы используются для получения выходного переменного тока от питания потоянным током. Этот тип инвертора используют для трехфазных установок, в которых требуется сигналы напряжения высокого качества.
Список использованной литературы
1. Issa Batarseh, «Power Electronic Circuits» by John Wiley, 2003.
2. IS.K. Mazumder, «High-Frequency Inverters: From Photovoltaic, Wind, and Fuel-Cell based Renewable- and Alternative-Energy DER/DG Systems to Battery based Energy-Storage Applications», Book Chapter in Power Electronics handbook, Editor M.H. Rashid, Academic Press, Burlington, Massachusetts, 2010.
3.V. Gureich «Electronic Devices on Discrete Components for Industrial and Power Engineering», CRC Press, New York, 2008, 418 p.
Устройства силовой электроники, развитие, применение, назначение
Силовой электроникой называют область науки и техники, которая решает проблему создания силовых электронных приборов, а также проблемы получения значительной электрической энергии, управления мощными электрическими процессами и преобразования электрической энергии в достаточно большую энергию другого вида при использовании в качестве основного инструмента этих приборов.
Ниже рассматриваются устройства силовой электроники на основе полупроводниковых приборов. Именно эти приборы используются наиболее широко.
Для получения электрической энергии уже длительное время используются рассмотренные выше солнечные элементы. В настоящее время доля этой энергии в общем объеме электроэнергии невелика. Однако многие ученые, к которым относится и лауреат Нобелевской премии академик Ж.И. Алферов, считают солнечные элементы очень перспективными источниками электрической энергии, не нарушающими энергетический баланс на Земле.
Управление мощными электрическими процессами является именно той проблемой, при решении которой силовые полупроводниковые приборы уже очень широко используются, а интенсивность их применения быстро возрастает. Это объясняется достоинствами силовых полупроводниковых приборов, основными из которых являются высокое быстродействие, малое падение напряжения в открытом состоянии и малый ток в закрытом состоянии (что обеспечивает малые потери мощности), высокая надежность, значительная нагрузочная способность по току и напряжению, малые размеры и вес, простота в управлении, органическое единство с полупроводниковыми устройствами информативной электроники, что облегчает объединение сильноточных и слаботочных элементов.
Во многих странах развернуты интенсивные научно-исследовательские работы по силовой электронике и благодаря этому силовые полупроводниковые приборы, а также электронные устройства на их основе постоянно совершенствуются. Это обеспечивает быстрое расширение области применения силовой электроники, что, в свою очередь, стимулирует научные исследования. Здесь можно говорить о положительной обратной связи в масштабах целой области человеческой деятельности. Результатом является стремительное проникновение силовой электроники в самые различные области техники.
Особенно быстрое распространение устройств силовой электроники началось после создания силовых полевых транзисторов и IGBT.
Этому предшествовал достаточно длительный период, когда основным силовым полупроводниковым прибором был незапираемый тиристор, созданный в 50е годы прошлого столетия. Незапираемые тиристоры сыграли выдающуюся роль в развитии силовой электроники и широко используются в наше время. Но невозможность выключения с помощью импульсов управления часто затрудняет их применение. Десятилетия разработчикам силовых устройств приходилось смиряться с этим недостатком, используя в ряде случаев довольно сложные узлы силовых схем для выключения тиристоров.
Широкое распространение тиристоров обусловило популярность возникшего в то время термина «тиристорная техника», который использовали в том же смысле, что и термин «силовая электроника».
Разработанные в указанный период силовые биполярные транзисторы нашли свою область применения, но радикально ситуацию в силовой электронике не изменили.
Только с появлением силовых полевых транзисторов и 10 ВТ в руках инженеров оказались полностью управляемые электронные ключи, приближающиеся по своим свойствам к идеальным. Это резко облегчило решение самых различных задач по управлению мощными электрическими процессами. Наличие достаточно совершенных электронных ключей дает возможность не только мгновенно подключать нагрузку к источнику постоянного или переменного напряжения и отключать ее, но и формировать для нее очень большие сигналы тока или напряжения практически любой требуемой формы.
Наиболее распространенными типовыми устройствами силовой электроники являются:
• бесконтактные переключающие устройства переменного и постоянного тока (прерыватели), предназначенные для включения или выключения нагрузки в цепи переменного или постоянного тока и, иногда, для регулирования мощности нагрузки;
• выпрямители, преобразующие переменное напряжение в напряжение одной полярности (однонаправленное);
• инверторы, преобразующие постоянное напряжение в переменное;
• преобразователи частоты, преобразующие переменное напряжение одной частоты в переменное напряжение другой частоты;
• преобразователи постоянного напряжения (конверторы), преобразующие постоянное напряжение одной величины в постоянное напряжение другой величины;
• преобразователи числа фаз, преобразующие переменное напряжение с одним числом фаз в переменное напряжение с другим числом фаз (обычно однофазное напряжение преобразуется в трехфазное или трехфазное — в однофазное);
• компенсаторы (корректоры коэффициента мощности), предназначенные для компенсации реактивной мощности в питающей сети переменного напряжения и для компенсации искажений формы тока и напряжения.
По существу устройства силовой электроники выполняют преобразование мощных электрических сигналов. Поэтому силовую электронику называют также преобразовательной техникой.
Устройства силовой электроники, как типовые, так и специализированные, используются во всех областях техники и практически в любом достаточно сложном научном оборудовании.
В качестве иллюстрации укажем некоторые объекты, в которых устройства силовой электроники выполняют важные функции:
• электропривод (регулирование скорости и момента вращения и др.);
• установки для электролиза (цветная металлургия, химическая промышленность);
• электрооборудование для передачи электроэнергии на большие расстояния на постоянном токе;
• электрометаллургическое оборудование (электромагнитное перемешивание металла и др.);
• электротермические установки (индукционный нагрев и др.);
• электрооборудование для зарядки аккумуляторов;
• электрооборудование автомобилей и тракторов;
• электрооборудование самолетов и космических аппаратов;
• оборудование для телевещания;
• устройства для электроосвещения (питание люминесцентных ламп и др.);
• медицинское электрооборудование (ультразвуковая терапия и хирургия и др.);
• устройства бытовой электроники.
Развитие силовой электроники изменяет и сами подходы к решению технических задач. К примеру, создание силовых полевых транзисторов и IGBT существенно способствует расширению области применения индукторных двигателей, которые в ряде областей вытесняют коллекторные двигатели.
Существенным фактором, благотворно влияющим на распространение устройств силовой электроники, являются успехи информативной электроники и, в частности, микропроцессорной техники. Для управления мощными электрическими процессами используются все более сложные алгоритмы, которые могут быть рационально реализованы только при применении достаточно совершенных устройств информативной электроники.
Эффективное совместное использование достижений силовой и информативной электроники дает действительно выдающиеся результаты.
Существующие устройства для преобразования электрической энергии в энергию другого вида при непосредственном использовании полупроводниковых приборов еще не имеют большой выходной мощности. Однако и здесь получены обнадеживающие результаты.
Полупроводниковые лазеры превращают электрическую энергию в энергию когерентного излучения в ультрафиолетовом, видимом и в инфракрасном диапазонах. Эти лазеры были предложены в 1959 г., а впервые реализованы на основе арсенида галлия (GaAs) в 1962 г. Лазеры на основе полупроводников отличаются высоким коэффициентом полезного действия (выше 10 %) и большим сроком службы. Их применяют, к примеру, в инфракрасных прожекторах.
Сверхъяркие светодиоды белого свечения, появившиеся в 90х годах прошлого века, уже используются в ряде случаев для освещения вместо ламп накаливания. Светодиоды существенно более экономичны и имеют значительно больший срок службы. Предполагается, что область применения светодиодных светильников будет быстро расширяться.
Инвертор с чистым синусом за 15 минут или «силовая электроника — каждому»
Что такое силовая электроника? Без сомнения — это целый мир! Современный и полный комфорта. Многие представляют себе силовую электронику как что-то «магическое» и далекое, но посмотрите вокруг — почти все, что нас окружает содержит в себе силовой преобразователь: блок питания для ноутбука, светодиодная лампа, UPS, различные регуляторы, стабилизаторы напряжения, частотники (ПЧ) в вентиляции или лифте и многое другое. Большинство из этого оборудования делает нашу жизнь комфортной и безопасной.
Разработка силовой электроники по ряду причин является одной из сложнейших областей электроники — цена ошибки тут очень высока, при этом разработка силовых преобразователей всегда привлекала любителей, DIYщиков и не только. Наверняка вам хотелось собрать мощный блок питания для какого-то своего проекта? Или может быть online UPS на пару кВт и не разориться? А может частотник в мастерскую?
Сегодня я расскажу о своем небольшом открытом проекте, а точнее о его части, который позволит шагнуть в мир разработки силовой электроники любому желающему и при этом остаться в живых. В качестве демонстрации возможностей я покажу как за 15 минут собрать инвертор напряжения из 12В DC в 230В AC с синусом на выходе. Заинтриговал? Поехали!
Причины появления проекта
В последние пару лет разработка силовых преобразователей составляет около 90% моих заказов, основные трудозатраты уходят в основном на разработку ПО и макетирование, проектирование схемотехники + финальная трассировка платы от общих затрат составляет обычно не более 10-15%. Тут приходит понимание, что процесс макетирования, в который входит разработка ПО, необходимо как-то сократить и оптимизировать.
Выхода как всегда есть минимум два: купить готовую отладку, например, у Texas Instrumets или Infineon, но они обычно заточены под конкретную задачу и стоят от 500 до 5000$, при этом нет гарантии, что будет похожий заказ и данное вложение с высокой вероятностью просто не окупится.
Второй вариант — делать самому, но делать основательно это почти тоже самое, что запустить «+1 ревизию железа», что выльется в дополнительные траты для заказчика. Если делать не основательно, то как обычно все будет на соплях и где-нибудь что-то отвалится и пока макет, комплектующие и сроки.
Спустя какое-то время, я обратили внимание на очевиднейшее решение. Оно настолько простое и очевидное, что долго удивлялся почему такого еще не сделал тот же TI или Infineon. Сейчас расскажу о своем «просветление».
Давайте рассмотрим несколько наиболее популярных топологий силовых преобразователей:
Из этого можно сделать вывод, что имея некий стандартный модуль в виде связки «полумост + конденсатор» можно построить любой преобразователь, добавляя лишь нужный дроссель или трансформатор. Поэтому очевидным решения для упрощения прототипирования было создание вот такого модуля:
Борьба добра со злом
К сожалению ограниченное количество часов в сутках и банальная лень диктуют свои условия. К необходимости изготовить данный модуль я пришел еще год назад, но реализация постоянно переносилась под лозунгом — «на следующих выходных точно сделаю!».
Наверно идея так бы и осталась лежать на полке, если бы не 2 события. Во-первых, ко мне пришли в один месяц 2 заказчика и каждый хотел сложный и интересный в реализации преобразователь, а главное готовы были очень хорошо заплатить. Хотя учитывая, что он из Европы, то может для них этого и дешево еще оказалось)) Оба проекта для меня были интересны, например, один из них «трехфазный стабилизатор напряжения с гальванической развязкой (sic!)», то есть 3-х фазный PFC + 3 мостовых преобразователя (phase shifted) + синхронный выпрямитель + 3-х фазный инвертор. Все это на SiC и очень компактное. В общем я взялся за 2 больших заказа, каждый из них по
800 человеко-часов и срок 6 месяцев. В итоге меня «заставили» искать пути оптимизации.
Во-вторых, мне неожиданно написали ребята из компании PCBway, многие наверняка у них платы заказывали, и предложили по сотрудничать. Они очень активно поддерживают открытые железячные проекты, то есть ту самую инициативу CERN — Open Source Hardware. Сотрудничество простое, понятное для обеих сторон — они снабжают меня бесплатно платами для моих проектов, а я их открываю, ну и выкладываю на их сайте, в других местах уже по желанию. Для меня это стало дополнительной мотивацией, а главное совесть моя чиста, т.к. я уже несколько лет заказываю у них платы и на прототипы, и для серийного производства при этом рассказываю о них знакомым и партнерам. Теперь мне за это еще и плюшка в виде бесплатных плат для мелких проектов, можно чаще писать на хабр))
И тут лед тронулся, было решено создать не просто описанный ранее модуль, а целый комплект разработчика силовой электроники и сделать его открытым и доступным каждому.
Структура проекта
В начале статьи я упомянул, что расскажу сегодня лишь про одну часть — это силовой модуль полумоста. Он один уже позволяет создать преобразователь, просто прикрутив управляющую схему, например, отладку STM32-Discovery, Arduino, TMS320, TL494 или чем вы там владеете. Привязка к какой либо платформе или МК нет вообще.
Только это не весь проект, а часть)) Из чего состоит готовый силовой преобразователь? В первую очередь силовая часть, чтобы она заработала нужен некий модуль управления, чтобы понять что происходит нужна индикация, а чтобы понять что происходит с безопасного расстояния еще и интерфейс, например, Modbus RTU или CAN.
В итоге общая структура проекта выглядит так:
Вероятно в будущем еще напишу программку для расчета трансформаторов и дросселей, как обычных, так и планарных. Пока что так. Разные части диаграммы в черновом варианте уже реализована и обкатаны в двух проектах, после небольших доработок по ним так же будут написаны статьи и доступны исходники.
Силовой модуль полумоста
Теперь пришло время подробнее посмотреть на сегодняшнего героя. Модуль универсален и позволяет работать с транзисторами Mosfet и IGBT, как низковольтными, так и высоковольтными ключами до 1200В.
В статье фигурирует 1-я ревизия модуля, она полностью рабочая, но будет 2-я ревизия, в которой устранятся чисто конструктивные недочеты и поменяются разъемы на более удобные. После завершения создания документации, закинул gerber в PCBway и мне через 6 дней в дверь постучался курьер и вручил вот такую прелесть:
Еще через неделю наконец-то привезли на собаках комплектующие из одного прекрасного отечественного магазина. В итоге все было смонтировано:
Перед тем, как двигаться дальше, давайте посмотрим на принципиальную схему модуля. Скачать ее можно тут — PDF.
Тут ничего сложного или магического нет. Обычный полумост: 2 ключа внизу, 2 вверху, можете паять по одному. Драйвер как выше писал из семейства 1ED, очень злой и бессмертный. Везде по питанию есть индикация, включая +12В на выходе dc/dc. Защита реализована на логическом элементе AND, в случае превышения тока компаратор выдаст +3.3В, они засветят оптрон и он притянет один из входов AND к земле, что означает установление лог.0 и ШИМ-сигнал с драйверов пропадет. AND с 3-мя входами использован специально, в следующей ревизии планирую сделать еще и защиту от перегрева радиатором и завести сигнал ошибки туда же. Все исходники будут в конце статьи.
Собираем макет инвертора
Долго думал на чем бы продемонстрировать работу модуля, чтобы и не сильно скучно, и полезно, и не сильно сложно, чтобы повторить мог любой. Поэтому остановился на инверторе напряжения, такие используют для работы с солнечными панелями, если что-то бахнет по низковольтной стороне — не страшно, а по высоковольтной — просто когда включите не суйте туда руки.
Сам инвертор до безобразия простой, кстати, МАП Энергия клепают именно такие, вот вам пример даже коммерческой реализации сей идеи. Работа инвертора заключается в том, чтобы сформировать из постоянного напряжения 12В переменное синусоидальной формы с частотой 50 Гц, ведь именно с таким привык работать обычный трансформатор на 50 Гц. Я использую какой-то советский, вроде ОСМ, 220В обмотка заводская и используется как вторичка, а первичная
8В намотана медной шиной. Выглядит это так:
И это чудовище всего на 400 Вт! Вес трансформатора около 5-7 кг по ощущениям, если уронить на ногу, то в армию точно не возьмут. Собственно в этом и заключается минус инверторов с «железными» трансформаторами, они огромные и тяжелые. Плюс их в том, что данные инверторы оооочень простые, не требует никакого опыта для создания и конечно же дешевые.
Теперь давайте соединим модули и трансформатор. На самом деле модуль для разработчика должен представляться просто как «черный ящик» у которого есть вход 2-х ШИМов и 3 силовых вывода: VCC, GND и собственно выход полумоста.
Теперь из этих «черных ящиков» давайте изобразим наш инвертор:
Ага, понадобилось всего 3 внешних элемента: трансформатор + LC фильтр. Для последнего дроссель я изготовил просто намотав провод от модуля до трансформатора на кольцо из материала Kool Mu размер R32 с проницаемость 60, индуктивность около 10 мкГн. Конечно же дроссель надо бы рассчитать, но нам же надо за 15 минут)) Вообще если будете гонять что-то подобное на 400 Вт, то нужно кольцо размером R46 (это внешний диаметр). Емкость — 1-10 мкФ пленка, этого достаточно. На самом деле в качестве экономии можно конденсатор не ставить, ибо емкость обмотки трансформатора здоровая… в общем у китайцев и МАПа именно так и сделали)) Дроссель выглядит вот так:
Остается накинуть тестовую нагрузку на выход, у меня это пара светодиодных лампочек на 20 Вт (ничего другого наглядного не оказалось под рукой), сами они кушают 24Вт, КПД однако. Так же ток холостого хода трансформатора около 1А. С АКБ будет кушать около 5А. В итоге имеем такой стенд:
Так же в макете используется АКБ Delta HR12-17 соответственно на 12В и емкостью 17 А*ч. Управлять преобразователем будем с отладочной платы STM32F469-Discovery.
Изначально для управления предполагалось использовать мою STM32VL-Disco, полученную на выставке еще в 2010-м, но так случилось, что именно на этом макете ей суждено было умереть уже когда весь код написан и макет запущен. Забыл про щупы осциллографа и объединил 2 земли, аминь. В итоге все было переписано на STM32F469NIH6, именно эта отладка имелась под рукой, поэтому будет 2 проекта: для F100 и для F469, оба проверены. Проект собран для TrueSTUDIO, версия эклипса от ST.
Вообще в своей другой статье ооочень подробно и наглядно рассказал как формировать синусоидальный сигнал, как писать код и прочее прочее. Прочитать можно — тут.
Прочитали? Хотите собрать? Держите проект:
Стоит обратить внимание, что я на один полумост (модуль) подаю 2 сигнала, рисующих синус, а на другой 2 сигнала задающие 50 Гц. При чем одна диагональ «красный+желтый», а другая «синий+зеленый». В статье, что дал выше про это подробно написано, если вдруг не поняли. Теперь как подали сигналы, накидываем на оба полумоста +12В и GND от лабораторного блока питания. Сразу АКБ не советую, если где-то ошиблись, то может сгореть что-то. Защита на плате спасает от превышения тока, но не от явных косяков, когда плюс и минус перепутали, а вот лабораторник спасает. 12В и 1А для тестов хватит. Берем щуп осциллографа, его земляной провод на выход первого полумоста, а сам щуп на выход другого полумоста и должна быть такая картинка:
Где синус спросите вы? Дело в том, что сопротивление входа осциллографа большое и он не представляет из себя нагрузку, поэтому ток не протекает и синусу взяться не откуда. Добавим нагрузку, я смастерил из резисторов 10 Ом нагрузку 90 Ом просто включив последовательно 9 штук. Цепляем нагрузку к выходам полумостов и видим такую картину:
У вас так же? Значит пришла пора подключать дроссель, трансформатор, нагрузку и пробовать запускать. Achtung! Нельзя включать данный макет без нагрузки, ибо на холостом ходе на выходе может быть до 350. 380В. Чтобы такого не было нужна нагрузка или ОС. Последней у нас не будет, это тема отдельной статьи, можете в качестве факультатива прикрутить П-регулятор простейший, шаблон проекта у вас уже есть.
Включение
После включения получаем на выходе около 230В, выход конечно не стабилизированный и будет плавать 230В +-30В, для тестов пойдет, в другой статье доработаем макет как решусь рассказать про П и ПИ-регуляторы и их реализацию.
Теперь можно насладиться результатом работы, а при необходимости упихать все в коробку и даже применить в хозяйстве или на даче для обеспечения себя светом и прочими прелестями.
Вы наверняка заметили задержку между «щелчком», то есть подачей питания на Discovery и включением ламп — это время, которое МК потратил на инициализацию. Эту задержку можно уменьшить, если писать в регистр разом одну цифру, а не дробить запись регистра на кучу строк. Я раздробил исключительно для наглядности. Хотя и это не страшно, с кодом на HAL задержка в 3 раза дольше и народ как-то живет с ним))
Пока не забыл, исходники проекта:
Осталось посмотреть как там с температурами на плате, нет ли каких-то особо горячих мест. 5-6А это конечно мало, но если сквозной ток идет или еще какая серьезная ошибка, то этого хватит, чтобы превратить плату в чайник:
Как видите самым горячим элементом является dc/dc модуль для гальванической развязки, это который на 2 Вт, он нагревается аж до 34 градусов, ну еще и шунт. Сами же транзисторы и радиатор имеют температуру окружающей среды после 30 минут работы преобразователя))
Благодарности и планы
В ближайшее время я планирую написать про DSP board и по управлять уже не с отладки discovery, а уже со «специализированного» модуля. Платы 2-й ревизии на него уже пришли от тех же PCBway, жду компоненты и сразу писать.
Надеюсь статья и сама идея вам понравились. В дальнейшем на этих же модулях покажу как собрать частотник, mppt контроллер, а может и еще чего интересного. Если у вас есть вопросы, то не стесняйтесь их задавать в комментариях или в личку, если у вас вдруг нет полноценного аккаунта, постараюсь ответить на все вопросы.
Теперь немного благодарностей компании PCBway, на самом деле очень хорошо, что они поддерживают open source движуху. Может скоро железячники даже догонять софтописателей по количеству и качеству открытых проектов.