Силовые диоды для чего нужны
Что такое силовые диоды и для чего они нужны
Админчег Muz4in.Net 24.12.2018, 16:32 Тэги
Силовые диоды, или как их еще называют варикапы, представляют собой полупроводниковые приборы, которые для работы должны взаимодействовать с одним стандартным р-п-переходом. Зависимо от области их применения, они могут быть разных видов, которые отличаются также своими параметрами. Назначение силовых диодов является перестройка переменного тока в постоянный, путем последовательного включения в цепь источника переменного тока и нагрузки, поэтому силовые диоды встречаются еще под названием выпрямители. Если вас заинтересовала эта тема и вы хотите узнать подробнее про силовые диоды https://gk-absolut1.ru/catalog/diody-silovye/. Эти полупроводники или электровакуумные устройства, пропускают через себя электроток в одном направлении. Они обладают двумя контактами для подсоединения к электросети.
Силовые диоды – применение
Устройства применяются практически во всех современных бытовых и промышленных электроприборах, для детекторов, схемотехники, стабилизаторов, коммутаторах, ограничителях и прочее. Они употребляются в устройствах нелинейного обрабатывания аналоговых импульсов и обеспечивают течение главного сигнала. Силовые диоды применяются для реорганизации переменного тока в постоянный.
Некоторые виды могут использоваться для стабилизации выходного напряжения генераторов питания или для ограничения диапазона колебаний импульсов. Диодные мосты позволяет осуществлять замыкание и размыкание цепи для трансляции сигнала в коммутационных приборах, питающихся электричеством. Благодаря своим техническим характеристикам они используются во всех изделия: от самых простых, до самых сложных.
Систематизация диодов
Классификация проводится по назначению, физическим и электрическим, характеристикам, материалу изготовления, конструктивным и технологическим параметрам и прочее.
По мощностным показателям они бывают:
Варикапы могут быть произведены из кремния или германия. Самыми часто встречаемыми являются кремневые элементы, поскольку обладают более высокими техническими параметрами. При тех же показателях напряжения они располагают гораздо меньшими обратными токами, поэтому величина потенциального обратного напряжения может регистрировать 1500В, в то время как у германиевых моделей только от 100В до 400В.
Типы варикапов
По области применения и способу функционирования силовые диоды делятся на:
Буквенно-цифровая кодификация
Отечественные полупроводники обладают специальной кодировкой из комбинации букв и цифр, посредством которых специалист быстро может выбрать то, что ему необходимо.
Кроме того, изготовитель может дополнительно вносить в код и другие знаки.
Для зарубежных полупроводников предусмотрен стандарт EIA/JEDEC, обозначение которым можно расшифровать следующим образом:
Как проверить функциональность?
Проверка силовых диодов выполняется мультиметром или тестером. Не существует общей методикой проверки всех полупроводников, и каждый класс отличается своими характеристиками способа тестирования.
Варикап обладает двумя выводами – отрицательный (катод) и положительный (анод). Щупы пробора измерения одновременно присоединяются к выводам: красный (+) к аноду, а черный (-) к катоду. На дисплее тестера отображается величина порогового напряжения диода. Дальше, после выполнения смены полярности, измерительный прибор должен показывать бесконечно высокое сопротивление и это означает, что диод функционирует исправно. Когда регистрируется утечка – тестируемый элемент нефункционален и требует обязательной замены.
Для тестирования каждого из типов силовых диодов на мультиметре предусмотрены специальные режимы, поэтому перед началом процедуры надо внимательно ознакомиться с руководством по эксплуатации прибора.
Силовые диоды
Цепи переменного электротока характеризуются циклическим подъемом и падением его силы, что может быть графически отражено через синусоидальную кривую. Когда стоит цель преобразовать ток в постоянный, используются специальные детали – выпрямители, примером которых являются силовые диоды, подключаемые в электроцепь последовательно. Для выбора подходящего устройства зарубежного или отечественного производства электрику нужно иметь представление об их основных типах и характеристиках.
Как классифицируются
Справочник по выпрямительным диодам может быть составлен по ряду критериев. Если отталкиваться от наибольшей величины прямого электротока, можно выделить категории деталей с малым значением мощности (предназначены для работы с током до 300 миллиампер), средним (от 300 мА до 10 А) и выпрямительные диоды большой мощности (более 10 А). Мощные диоды с кремниевыми компонентами обладают значительно меньшим значением обратного тока, по сравнению с деталями из германия. Это позволяет добиться больших значений возможного обратного напряжения в полупроводниковых элементах, превышающего 1,5 киловольт (у германиевых изделий оно довольно малое – не более 400 вольт).
По особенностям функционирования можно выделить следующие типы диодных устройств:
Конструкция силового диода
Данные детали производятся в разных вариантах исполнения. Точечные устройства собираются из пластинки малых габаритов (до 1,5 мм2 площади) германия или кремния и иголки из стали, требуемой для формирования p-n-перехода в месте соприкосновения (электроток через него чаще бывает малым – менее 100 миллиампер). Данные изделия обладают скромными значениями емкости и мощности, из-за чего применяются для электроцепей с высокими частотами. Есть и плоскостные изделия, отличающиеся большими размерами контактного перехода в силу конструкции – в ней задействована пара пластинок с разными значениями электропроводности. Через такие детали может проходить значительный ток, порой до 6 килоампер.
Конструкцию, создающую p-n-переход, размещают в корпусе устройства, предохраняющем ее от воздействия внешней среды и создающем отведение тепловой энергии. Изделия с малой мощностью размещают в корпусе из пластмассы с гнущимися внешними выводами, средней и высокой – в металлостеклянном. Некоторые мощные диоды имеют металлокерамическое исполнение. На корпусе указывается маркировка, при этом импортные детали и варикапы российского производства имеют различные символьные системы. У иностранных изделий чаще используется маркировка из нескольких разноцветных полос (значения цветов указываются в прилагаемой документации), у российских – цифро-буквенная.
Тиристоры
Данные детали находят широкое применение в приборах для выпрямления и преобразования электротока, сварочных аппаратах, устройствах запуска и контроля скорости работающего на электричестве транспорта, различных радиоэлектронных и коммутационных установках. Применяются они и в конструкциях, предназначенных для компенсации реактивной мощностной нагрузки.
Важно! Низкочастотные тиристоры рассчитаны на эксплуатацию при частоте не более 100 герц. Устройства, отличающиеся повышенным быстродействием, заточены под использование в установках, требующих быстрого нарастания открытого электротока и закрытого напряжения.
Силовые полупроводниковые диоды
Данные изделия широко применяются в трансформаторах электрической энергии и разного рода силовых установках. Подключение диода в электроцепь может преследовать множество целей, но первоочередными обычно являются выпрямление тока и предохранение от коммутационных перегрузок. Распространены диоды таблеточной формы, в которых полюсами являются уплощенные основания. Определить «плюс» и «минус» в таких изделиях можно по отметкам на корпусе. Используют их в силовых установках, требующих малой зарядной дозы для восстановления, в высокочастотных условиях (2 килогерца и выше), в статических трансформаторах электрической энергии. Есть и диоды штыревого типа, в них роль катода исполняет вывод, а анода – основание, сделанное из меди. Применяют их чаще в условиях невысокой частоты (менее 500 Гц). Некоторые диоды используют в генераторах автомобилей, тракторов, выпрямительных блоках сварочного оборудования, системах возбуждения.
Где находят применение диоды
Помимо собственно преобразования нестабильного тока в постоянную форму, диоды имеют ряд других вариантов использования. К числу типичных примеров таких компонентов относятся светодиоды, используемые в разных электротехнических приборах, фонарях, телевизорах. Варикапы также применяются в детекторных аппаратах, логарифмических усилителях и иных установках, работающих с нелинейной обработкой аналоговых сигналов. Здесь они выполняют преобразовательную функцию либо формируют некоторый параметр. При встречно-параллельном подключении пары элементов можно сформировать блок ограничения сигнала. С точки зрения функционального наполнения, серьезной разницы между сборкой и единичными диодными компонентами не наблюдается. Вышедший из строя элемент подлежит замене равноценным ему.
Силовые диодные компоненты заточены под трансформацию синусоидального тока в постоянный. Поскольку такая необходимость возникает часто, эти радиодетали используются в широком спектре приборов и схем. Разные варианты исполнения рассчитаны на эксплуатацию при различных показателях силы и частоты тока.
Видео
Силовые диоды
В основе принципа действия большинства полупроводниковых приборов лежат явления и процессы, возникающие на границе между двумя областями полупроводника с различными типами электрической проводимости – электронной (n-типа) и дырочной (р-типа). В области n-типа преобладают электроны, которые являются основными носителями электрических зарядов, в р-области таковыми являются положительные заряды (дырки). Граница между двумя областями с различными типами проводимости называется р-п-переходом.
Функционально диод (рис. 1.) можно считать неуправляемым электронным ключом с односторонней проводимостью. Диод находится в проводящем состоянии (замкнутый ключ), если к нему приложено прямое напряжение.
Рис. 1. Условно-графическое обозначение диода
Ток через диод iF определяется параметрами внешней цепи, а падение напряжения на полупроводниковой структуре имеет небольшое значение. Если к диоду приложено обратное напряжение, то он находится в непроводящем состоянии (разомкнутый ключ) и через него протекает небольшой ток. Падение напряжения на диоде в этом случае определяется параметрами внешней цепи.
Защита силовых диодов
Наиболее характерными причинами электрического повреждения диода являются высокая скорость нарастания прямого тока diF/dt при его включении, перенапряжения при выключении, превышение максимального значения прямого тока и пробой структуры недопустимо большим обратным напряжением.
При высоких значениях diF/dt возникает неравномерная концентрация носителей заряда в структуре диода и, как следствие этого, локальные перегревы с последующим повреждением структуры. Основной причиной высоких значений diF/dt является малая индуктивность в контуре, содержащем источник прямого напряжения и включенный диод. Для снижения значений diF/dt последовательно с диодом включается индуктивность, которая ограничивает скорость нарастания тока.
Для уменьшения амплитудных значений напряжений, прилагаемых к диоду при отключении цепи, используется соединённые последовательно резистор R и конденсатор C – так называемая RC-цепь, подключаемая параллельно диоду.
Для защиты диодов от токовых перегрузок в аварийных режимах используются быстродействующие электрические предохранители.
Основные типы силовых диодов
По основным параметрам и назначению диоды принято разделять на три группы: общего назначения, быстровосстанавливающиеся диоды и диоды Шоттки.
Диоды общего назначения
Эта группа диодов отличается высокими значениями обратного напряжения (от 50 В до 5 кВ) и прямого тока (от 10 А до 5 кА). Массивная полупроводниковая структура диодов ухудшает их быстродействие. Поэтому время обратного восстановления диодов обычно находится в диапазоне 25-100 мкс, что ограничивает их использование в цепях с частотой выше 1 кГц. Как правило, они работают в промышленных сетях с частотой 50 (60) Гц. Прямое падение напряжения на диодах этой группы составляет 2,5-3 В.
Силовые диоды выпускаются в различных корпусах. Наибольшее распространение получили два вида исполнения: штыревой и таблеточный (рис. 2 а, б).
Рис. 2. Конструкция корпусов диодов: а – штыревая; б – таблеточная
Принцип действия диодов Шоттки основан на свойствах области перехода между металлом и полупроводниковым материалом. Для силовых диодов в качестве полупроводника используется обедненный слой кремния n-типа. При этом в области перехода со стороны металла имеет место отрицательный заряд, а со стороны полупроводника – положительный.
Особенностью диодов Шоттки является то, что прямой ток обусловлен движением только основных носителей – электронов. Отсутствие накопления неосновных носителей существенно уменьшает инерционность диодов Шоттки. Время восстановления составляет обычно не более 0,3 мкс, падение прямого напряжения примерно 0,3 В. Значения обратных токов в этих диодах на 2-3 порядка выше, чем в диодах с p-n-переходом. Предельное обратное напряжений обычно не более 100 В. Они используются в высокочастотных и импульсных цепях низкого напряжения.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Силовые диоды для чего нужны
Полупроводниковый диод или просто диод представляет из себя радиоэлемент, который пропускает электрический ток только в одном направлении и блокирует его прохождение в другом направлении. По аналогии с гидравликой диод можно сравнить с обратным клапаном: устройством, которое пропускает жидкость только в одном направлении.
Диод — это радиоэлемент с двумя выводами. Некоторые диоды выглядят почти также как и резисторы:
А некоторые выглядят чуточку по-другому:
Есть также и SMD исполнение диодов:
Выводы диода называются — анод и катод. Некоторые по ошибке называют их «плюс» и «минус». Это неверно. Так говорить нельзя.
На схемах диод обозначается так
Он может пропускать электрический ток только от анода к катоду.
Из чего состоит диод
В нашем мире встречаются вещества, которые отлично проводят электрический ток. Сюда в основном можно отнести металлы, например, серебро, медь, алюминий, золото и так далее. Такие вещества называют проводниками. Есть вещества, которые ну очень плохо проводят электрический ток — фарфор, пластмассы, стекло и так далее. Их называют диэлектриками или изоляторами. Между проводниками и диэлектриками находятся полупроводники. Это в основном германий и кремний.
После того, как германий или кремний смешивают с мельчайшей долей мышьяка или индия, образуется полупроводник N-типа, если смешать с мышьяком; или полупроводник P-типа, если смешать с индием.
Полупроводник P-типа в диоде является анодом, а полупроводник N-типа — катодом.
Давайе вскроем советский диод Д226 и посмотрим, что у него внутри, сточив часть корпуса на наждачном круге.
диод Д226
Вот это и есть тот самый PN-переход
PN-переход диода
Как определить анод и катод диода
1) на некоторых диодах катод обозначают полоской, отличающейся от цвета корпуса
2) можно проверить диод с помощью мультиметра и узнать, где у него катод, а где анод. Заодно проверить его работоспособность. Этот способ железный ;-). Как проверить диод с помощью мультиметра можно узнать в этой статье.
Где находится анод, а где катод очень легко запомнить, если вспомнить воронку для наливания жидкостей в узкие горлышки бутылок. Воронка очень похожа на схему диода. Наливаем в воронку, и жидкость у нас очень хорошо бежит, а если ее перевернуть, то попробуй налей-ка через узкое горлышко воронки ;-).
Диод в цепи постоянного тока
Как мы уже говорили, диод пропускает электрический ток только в одном направлении. Для того, чтобы это показать, давайте соберем простую схему.
прямое включение диода
Так как наша лампа накаливания на 12 Вольт, следовательно, на блоке питания тоже выставляем значение в 12 В и собираем всю электрическую цепь по схеме выше. В результате, лампочка у нас прекрасно горит. Это говорит о том, что через диод проходит электрический ток. В этом случае говорят, что диод включен в прямом направлении.
диод в прямом включении
Давайте теперь поменяем выводы диода. В результате, схема примет такой вид.
обратное включение диода
Как вы видите, лампочка не горит, так как диод не пропускает электрический ток, то есть блокирует его прохождение, хотя источник питания и выдает свои честные 12 Вольт.
обратное включение диода
Какой вывод можно из этого сделать? Диод проводит постоянный ток только в одном направлении.
Диод в цепи переменного тока
Кто забыл, что такое переменный ток, читаем эту статью. Итак, для того, чтобы рассмотреть работу диода в цепи переменного тока, давайте составим схему. Здесь мы видим генератор частоты G, диод и два клеммника Х1 и Х2, с которых мы будем снимать сигнал с помощью осциллографа.
Мой генератор частоты выглядит вот так.
генератор частот
Осциллограмму будем снимать с помощью цифрового осциллографа
Генератор выдает переменное синусоидальное напряжение.
синусоидальный сигнал
Что же будет после диода? Цепляемся к клеммам X1 и X2 и видим вот такую осциллограмму.
переменное напряжение после диода
Диод вырезал нижнюю часть синусоиды, оставив только верхнюю часть.
А что будет, если мы поменяем выводы диода? Схема примет такой вид.
переменый ток после диода
переменный ток после диода
Ничего себе! Диод срезал только положительную часть синусоиды!
Характеристики диода
Давайте рассмотрим характеристику диода КД411АМ. Ищем его характеристики в интернете, вбивая в поиск «даташит КД411АМ»
Для объяснения параметров диода, нам также потребуется его ВАХ
1) Обратное максимальное напряжение Uобр — это такое напряжение диода, которое он выдерживает при подключении в обратном направлении, при этом через него будет протекать ток Iобр — сила тока при обратном подключении диода. При превышении обратного напряжения в диоде возникает так называемый лавинный пробой, в результате этого резко возрастает ток, что может привести к полному тепловому разрушению диода. В нашем исследуемом диоде это напряжение равняется 700 Вольт.
2) Максимальный прямой ток Iпр — это максимальный ток, который может течь через диод в прямом направлении. В нашем случае это 2 Ампера.
3) Максимальная частота Fd , которую нельзя превышать. В нашем случае максимальная частота диода будет 30 кГц. Если частота будет больше, то наш диод будет работать неправильно.
Виды диодов
Стабилитроны
Стабилитроны представляют из себя те же самые диоды. Даже из названия понятно, чтоб стабилитроны что-то стабилизируют. А стабилизируют они напряжение. Но чтобы стабилитрон выполнял стабилизацию, требуется одно условие. Они должны подключатся противоположно, чем диоды. Анод на минус, а катод на плюс. Странно не правда ли? Но почему так? Давайте разберемся. В Вольт амперной характеристике (ВАХ) диода используется положительная ветвь — прямое направление, а вот в стабилитроне другая часть ветки ВАХ — обратное направление.
Снизу на графике мы видим стабилитрон на 5 Вольт. Сколько бы у нас не изменялась сила тока, мы все равно будем получать 5 Вольт ;-). Круто, не правда ли? Но есть и подводные камни. Сила тока не должны быть больше, чем в описании на диод, иначе он выйдет из строя от высокой температуры — Закон Джоуля-Ленца. Главный параметр стабилитрона — это напряжение стабилизации (Uст). Измеряется в Вольтах. На графике вы видите стабилитрон с напряжением стабилизации 5 Вольт. Также есть диапазон силы тока, при котором будет работать стабилитрон — это минимальный и максимальный ток (Imin, Imax). Измеряется в Амперах.
Выглядят стабилитроны точно также, как и обычные диоды:
На схемах обозначаются вот так:
Светодиоды
Светодиоды — особый класс диодов, которые излучают видимый и невидимый свет. Невидимый свет — это свет в инфракрасном или ультрафиолетовом диапазоне. Но для промышленности все таки большую роль играют светодиоды с видимым светом. Они используются для индикации, оформления вывесок, светящихся баннеров, зданий а также для освещения. Светодиоды имеют такие же параметры, как и любые другие диоды, но обычно их максимальный ток значительно ниже.
Предельное обратное напряжение (Uобр) может достигать 10 Вольт. Максимальный ток (Imax) будет ограничиваться для простых светодиодов порядка 50 мА. Для осветительных больше. Поэтому при подключении обычного диода нужно вместе с ним последовательно подключать резистор. Резистор можно рассчитать по нехитрой формуле, но в идеале лучше использовать переменный резистор, подобрать нужное свечение, замерять номинал переменного резистора и поставить туда постоянный резистор с таким же номиналом.
Лампы освещения из светодиодов потребляют копейки электроэнергии и стоят дешево.
Очень большим спросом пользуются светодиодные ленты, состоящие из множества SMD светодиодов. Смотрятся очень красиво.
На схемах светодиоды обозначаются так:
Не забываем, что светодиоды делятся на индикаторные и осветительные. Индикаторные светодиоды обладают слабым свечением и используются для индикации каких-либо процессов, происходящих в электронной цепи. Для них характерно слабое свечение и малый ток потребления
Ну и осветительные светодиоды — это те, которые используются в ваших китайских фонариках, а также в LED-лампах
Светодиод — это токовый прибор, то есть для его нормальной работы требуется номинальный ток, а не напряжение. При номинальном токе на светодиоде падает некоторое напряжение, которое зависит от типа светодиода (номинальной мощности, цвета, температуры). Ниже табличка, показывающая какое падение напряжения бывает на светодиодах разных цветов свечения при номинальном токе:
Как проверить светодиод можно узнать из этой статьи.
Тиристоры
Тиристоры представляют собой диоды, проводимость которых управляется с помощью третьего вывода — управляющего электрода (УЭ). Основное применение тиристоров — это управление мощной нагрузкой с помощью слабого сигнала, подаваемого на управляющий электрод. Выглядят тиристоры примерно как диоды или транзисторы. У тиристоров параметров столько, что не хватит статьи для их описания. Главный параметр — Iос,ср. — среднее значение тока, которое должно протекать через тиристор в прямом направлении без вреда для его здоровья. Немаловажным параметром является напряжение открытия тиристор — (Uу), которое подается на управляющий электрод и при котором тиристор полностью открывается.
а вот так примерно выглядят силовые тиристоры, то есть тиристоры, которые работают с большой силой тока:
На схемах триодные тиристоры выглядят вот таким образом:
Существуют также разновидности тиристоров — динисторы и симисторы. У динисторов нет управляющего электрода и он выглядит, как обычный диод. Динисторы начинают пропускать через себя электрический ток в прямом включении, когда напряжение на нем превысит какое-то значение. Симисторы — это те же самые триодные тиристоры, но при включении пропускают через себя электрический ток в двух направлениях, поэтому они используются в цепях с переменным током.
Диодный мост и диодные сборки
Производители также несколько диодов заталкивают в один корпус и соединяют их между собой в определенной последовательности. Таким образом получаются диодные сборки. Диодные мосты — одна из разновидностей диодных сборок.
На схемах диодный мост обозначается вот так:
Существуют также и другие виды диодов, такие как варикапы, диод Ганна, диод Шоттки и тд. Для того, чтобы их всех описать, нам не хватит и вечности.
Очень интересное видео про диод
Похожие статьи по теме «диод»