Азиподы что это на судах

Средства улучшения маневренных характеристик судна

Винто-рулевой комплекс судов не обеспечивает их необходимую маневрен­ность при движении на малых скоростях. Поэтому на многих судах для улучшения маневренных характеристик используются средства активного управления, которые позволяют создавать силу тяги в направлениях, отличных от направления диаметральной плоскости судна. К ним относятся: активные рули, подруливающие устройства, поворотные винтовые колонки и раздельные поворотные насадки.

Активный руль – это руль с установленным на нем вспомогательным винтом, расположенным на задней кромке пера руля (рис. 1). В перо руля встроен электродвигатель, приводящий во вращение гребной винт, который для защиты от по­вреждений помещен в насадку. За счет поворота пера руля вместе с гребным вин­том на определенный угол возникает поперечный упор, обусловливающий поворот судна. Активный руль используется на малых скоростях до 5 узлов. При маневри­ровании на стесненных акваториях активный руль может использоваться в каче­стве основного движителя, что обеспечивает высокие маневренные качества судна. При больших скоростях винт активного руля отключается, и перекладка руля осу­ществляется в обычном режиме.

Раздельные поворотные насадки (рис. 2). Поворотная насадка – это сталь­ное кольцо, профиль которого представляет элемент крыла. Площадь входного отверстия насадки больше площади выходного. Гребной винт располагается в наибо­лее узком ее сечении. Поворотная насадка устанавливается на баллере и поворачивается до 40° на каждый борт, заменяя руль. Раздельные поворотные насадки уста­новлены на многих транспортных судах, главным образом речных и смешанного плавания, и обеспечивают их высокие маневренные характеристики.

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 1 Схема активного руля Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 2 Раздельные поворотные насадки

Подруливающие устройства (рис. 3). Необходимость создания эффектив­ных средств управления носовой оконечностью судна привела к оборудованию судов подруливающими устройствами. ПУ создают силу тяги в направлении, перпендикулярном диаметральной плоскости судна независимо от работы главных движителей и рулевого устройства. Подруливающими устройствами оборудовано большое количество судов самого разного назначения. В сочетании с винтом и ру­лем ПУ обеспечивает высокую маневренность судна, возможность разворота на месте при отсутствии хода, отход или подход к причалу практически лагом. Ис­пользование подруливающих устройств эффективно до скорости судна 4-5 узлов.

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 3 Подруливающие устройства

Общие сведения об AZIPOD

В последнее время получила распространение электродвижущаяся система AZIPOD (Azimuthing Electric Propulsion Drive), которая включает в себя дизель-генератор, электромотор и винт (рис. 4).

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 4 Составные части комплекса «AZIPOD».
1 – панель управления; 2 – трансформаторы; 3 – рулевой модуль; 4 – блок контактных колец; 5 – установка охлаждения; 6 – распределительный щит; 7 – стабилизатор; 8 – движительный модуль с электродвигателем внутри; 9 – гребной винт; 10 – воздухопровод

AZIPOD (от англ. – azimuth (азимутальный) и pod (стручок) или азимуталь­ный электрический Погруженный гребной Двигатель (АЗИПОД)) является брен­дом шведско-швейцарской компании «ABB» (Asea Brown Boveri Ltd.) и представ­ляет собой размещенный в гондоле главный электрический движитель и рулевой механизм, приводящий в движение винт фиксированного шага с различными ско­ростными режимами.

Принцип действия движителя AZIPOD

Винто-рулевая колонка AZIPOD состоит из высокомоментного электродви­гателя, расположенного в отдельном корпусе – поде (рис. 5). Гребной винт уста­новлен непосредственно на валу электродвигателя, что позволило передавать вращающий момент с двигателя непосредственно на винт, минуя промежуточные ва­лы или редукторы. Электроэнергия для AZIPOD подается от судовой электростан­ции Судовые электростанции на буксирных судах с помощью гибких кабелей. Отказ от промежуточных элементов пропульсивной системы позволил исключить потери энергии, возникающие в них при переда­че энергии с вала двигателя на винт. Установка закреплена вне корпуса судна с по­мощью шарнирного механизма и может вращаться вокруг вертикальной оси на 360°, что позволяет получить лучшую маневренность судна как по курсу, так и по скорости по сравнению с обычными движительными установками. Система пово­рота – гидравлическая.

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 5 Винто-рулевая колонка AZIPOD

Модификации модулей «AZIPOD», их обозначения и установка на разных типах судов

Компанией АВВ создано несколько типов модулей AZIPOD, различающихся между собой по следующим признакам:

Каждому модулю присваивается свой код, который несёт в себе вышеизложенную информацию. Код формируется по следующей схеме (рис. 6):

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 6 Схема формирования кода установки AZIPOD

Например, код модуля «AZIPOD® VI 1600 A» означает AZIPOD для использования во льдах с мощностью на валу в нижних пределах диапазона мощности (например, 5 МВт), построенный с асинхронным гребным двигателем.

Далее представлены примеры некоторых модулей AZIPOD и способы их установки на различных судах (рис. 7 – 11):

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 7 Модели AZIPOD®VO, AZIPOD®XO Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 8 Модель AZIPOD®CO Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 9 Модель AZIPOD®CZ thruster Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 10 Модель AZIPOD®XC CRP (Contra-rotating propeller) Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 11 Модель AZIPOD®VI (для использования в ледовых условиях)

Основные преимущества и недостатки комплексов AZIPOD

Основными преимуществами движителя AZIPOD являются:

Основными недостатками комплекса AZIPOD являются высокая стоимость установки и трудность ремонта в рейсе.

Система управления AZIPOD

Один из примеров использования AZIPOD – танкер двойного действия (рис. 12), который на открытой воде двигается как обычное судно, а во льдах двигается кормой вперёд как ледокол, для чего кормовая часть такого судна оснащена ледо­вым подкреплением для ломки льда.

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 12 Танкер двойного действия Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 13 Навигационный мостик судна двойного назначения.
1 – кормовая и 2 – носовая часть мостика

С помощью джойстиков (рис. 15) капитан может изменить скорость судна, увеличив или уменьшив количество оборотов движителей маленькой рукояткой (телеграфом), и установить необходимый угол поворота движительных модулей для изменения направления тяги винтов, повернув джойстик вокруг своей оси. Положение модулей также контролируется на специальных индикаторах возле джойстиков.

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 14 Консоль управления движительными установками AZIPOD Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судахРис. 15 Джойстики ручного управления движителями AZIPOD

Источник

Azipod

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судах

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судах

Azipod (написание кириллицей редко Азипод, от англ. azimuth — азимут, полярный угол и pod — стручок, капсула, гондола двигателя) — бренд фирмы ABB Group, под которым выпускаются судовые тяговые управляемые двигательные установки (винто-рулевые колонки — ВРК). Изначально разработан в Финляндии на судоверфи Wärtsilä. Разновидность азимутального подруливающего устройства.

Содержание

Принцип действия

В традиционных двигательных системах двигатель находится внутри корпуса судна и вращение передается на движитель (винт) посредством промежуточных валов, иногда через редуктор.

Винто-рулевая колонка Azipod состоит из высокомоментного электродвигателя, расположенного в отдельном корпусе — поде. Гребной винт установлен непосредственно на валу электродвигателя, что позволило передавать вращающий момент с двигателя непосредственно на винт, минуя промежуточные валы или редукторы. Отказ от промежуточных элементов пропульсивной системы позволил исключить потери энергии, возникающие в них при передаче энергии с вала двигателя на винт. Установка закреплена вне корпуса судна с помощью шарнирного механизма и может вращаться вокруг вертикальной оси на 360°, что позволяет получить лучшую маневренность судна как по курсу, так и по скорости по сравнению с обычными движительными установками. Кроме того, такое техническое решение сокращает объём машинного отделения, повышая тем самым грузовместимость, что весьма актуально для транспортных судов.

Суда с двигательной установкой «Azipod»

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судах

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судах

См. также

Примечания

Ссылки

Полезное

Смотреть что такое «Azipod» в других словарях:

Azipod — is the registered brand name of the ABB Group for their azimuth thruster. Originally developed in Finland by Wärtsilä dockyards, these are marine propulsion units consisting of electrically driven propellers mounted on a steerable pod. The pod s… … Wikipedia

Azipod — Der Schottel Ruderpropeller, der Klassiker unter den Propellergondeln Propellergondel (auch Pod Antrieb genannt)[1] ist die Bezeichnung für ein Antriebsaggregat für Wasser und Luftfahrzeuge … Deutsch Wikipedia

azipod — noun an azimuth thruster, an engine and ships propeller in an underslung pod that is azimuth adjustable, to replace a fixed azimuth propeller and rudder configuration Syn: azimuth thruster … Wiktionary

Double acting ship — MT Tempera, the first double acting tanker, breaking ice astern Double acting ship (DAS) is a type of icebreaking merchant ship designed to run ahead in open water and astern (in layman s terms, backwards) in ice. Such ships can operate… … Wikipedia

MS Arcadia — is a British cruise liner, the second largest in the P O Cruises fleet. She was built by the Fincantieri company of Italy in a period of just twenty months. She was launched in April 2005 and named by Dame Kelly Holmes. An earlier ship of the… … Wikipedia

Азипод — Установка «Azipod» «Азипод» (от англ. Azipod: azimuth азимут, полярный угол и pod стручок, капсула, гондола двигателя) бренд фирмы ABB Group под которым выпускаются тяговые управляемые двигательные установки для судов.… … Википедия

MS Zuiderdam — Zuiderdam in Saint Thomas, U.S. Virgin Islands Nov 2007 Career Name: MS Zuiderdam … Wikipedia

Pod (navigation) — Pour les articles homonymes, voir Pod. Pods SSP à double hélice Un pod est un élément qui remplace à lui tout seul le couple hélice / gouvernail … Wikipédia en Français

Oasis of the Seas — MS Oasis of the Seas … Википедия

Azimuth thruster — An Azimuth thruster is a configuration of ship propellers placed in pods that can be rotated in any horizontal direction, making a rudder unnecessary. These give ships better maneuverability than a fixed propeller and rudder system. Primary… … Wikipedia

Источник

Системы AZIPOD: новые формы взаимодействия ходового мостика и машинного отделения

Азиподы что это на судах. Смотреть фото Азиподы что это на судах. Смотреть картинку Азиподы что это на судах. Картинка про Азиподы что это на судах. Фото Азиподы что это на судах

Фото: пресс-служба ГУМРФ им. С.О. Макарова

Совершенствование технологий в современном мире многими воспринимается как противостояние человеку. Уже стало привычным, что при нажатии кнопки совершается действие, которому нет объяснения. Алгоритмы становятся все изощреннее. И тем не менее во многих отраслях, связанных с вопросами безопасности, и на морском флоте тоже, важно понимать динамику происходящего. Как подметил философ Мартин Хайдеггер: «Техника – средство для достижения цели, все хотят утвердить власть духа над техникой, а техника все больше грозит вырваться из-под власти человека».

Николай Григорьев, профессор кафедры технических средств судовождения имени профессора Е.Л. Смирнова ГУМРФ им. адм. С.О. Макарова»

Артур Григорьев, инженер-механик судовых ядерных энергетических установок, директор по развитию ООО «РТС»

Появление на морском флоте пропульсивных установок системы AZIPOD относится к числу таких проявлений взаимоотношений человека и техники.

Может показаться странным, но новые технологии подвигают человека в каком-то смысле обратиться к своему прошлому опыту взаимодействия с природой. Примеры такого взаимодействия в области мореплавания есть, и их было много. Например, способности викингов, поморов, полинезийцев, бушменов и других народов ориентироваться в море, в пустыне, в тундре, и это все связано с когнитивными способностями человека, которые приобретают новые формы.

Когнитивные способности человека по управлению объектами и механизмами зарождаются из способностей владеть телом и затем эти способности переносить на сами объекты, делая их (объекты) продолжением сенсорных систем самого человека. Управляя плотом в горном потоке, мотоциклом, человек сливается с самим объектом управления. Эти способности не являются прирожденными, но само пространственное восприятие во многом зависит от способностей к восприятию и от способностей управлять телом. Используя классификацию Говарда Гарднера, процедуру управления динамическим объектом можно представить сочетанием двух интеллектов: пространственного, связанного со способностью к восприятию ситуации, и телесно-кинестетического, который позволяет адекватно реагировать на происходящее [Гарднер Г. «Структуры разума: Теория множественного интеллекта»].

Управляя подвижным объектом, человек как бы сливается с ним. По мере увеличения размеров объекта управления, например от скоростного катера к современному танкеру, ощущения единения ослабевают. Качество управления подвижным объектом зарождается и формируется на основании обратных связей. Когда эти воздействия носят перманентный характер, например при управлении судном, то объект управления поддается влиянию отрицательных обратных связей. Но бывают ситуации, когда обратная связь обрывается и объект подчиняется ранее заданной динамике, – положительная обратная связь. Например, отказало рулевое устройство. При этом судно начнет совершать циркуляцию.

Переход от воздействия отрицательных обратных связей к управлению по законам положительных обратных связей чреват негативными последствиями. Точно так же неверно сформированные сигналы обратных связей способны привести к негативным последствиям. Например, неверно выполненная команда на руль, что имело место в период перехода судоходства от парусного флота к паровому. На парусных судах команда об изменении курса подавалась на румпель, в то время как на пароходах команду стали подавать на руль [Коккрофт А.Н., Ламеер Дж. Н.Ф. Руководство по Правилам предупреждения столкновения (МППСС-72)].

Именно это стало одной из причин гибели «Титаника». Во время судебного разбирательства прозвучало, что рулевой неправильно выполнил команду. Учитывая, что большинство офицеров на «Титанике» были с парусного флота, команда была отдана на румпель, а молодой матрос ее выполнил на руль. Об этом написала внучка второго помощника капитана «Титаника» много лет спустя.

Но даже если действия обратных связей правильные, но при этом не соблюдены временные интервалы, отведенные на исполнение команды, то это приводит к потребности новых корректирующих действий. При умножении числа корректирующих действий возрастает нагрузка на исполнительные механизмы, что может привести – и приводит – к перегрузкам. В результате чего возникают блэкауты.

Человеческое сознание должно формировать модель поведения объекта для успешного претворения задуманного, что проверить можно только оценкой качества обратных реакций. Именно качество обратных связей определяет мастерство, которое порою перерастает в искусство управления как телом, так и объектом.

Поскольку «человеческое сознание есть специфическая форма сознания, создающая модель мира и затем моделирующая его поведение во времени, оценивая прошлое и моделируя на его базе будущее. Это требует усреднения и оценки множества обратных связей с целью принятия решения и достижения цели» [Каку Митио. Будущее разума].

Вернемся к теме AZIPOD, когда используются одна, две или три системы (есть одно судно, где установлены четыре системы AZIPOD, – ледокольный буксир «Юрибей»). Так как человек не всегда готов объединить и эффективно задействовать способности двух интеллектов: пространственного и телесно-кинестетического, актуальность подготовки специалистов нарастает. Ведь в процессе обучения должны выработаться навыки управления, и если этого не произойдет или выработанные навыки окажутся неадекватными, то это будет отражаться на качестве управления объектом.

Временные отрезки, отводимые для исполнения команд, должны быть выверены. Формирование величины и продолжительности действия сигналов обратных связей будет зависеть от готовности взаимодействовать пространственного и телесно-кинестетического интеллектов, с учетом динамических характеристик объекта управления. Оптимальный результат этого взаимодействия достигается тренировками.

Продолжительность тренировок зависит от способностей оператора адаптироваться к вариациям возможных ситуаций. Формирование продолжительности временных воздействий должно быть приведено в соответствие динамике управляемого объекта. А это предмет серьезных исследований.

Говард Гарднер пишет: «В последнее время психологи обнаружили тесную связь между владением телом и способностью задействовать когнитивные механизмы. Теперь все больше ученых склоняется к мысли, что необходимо изучать как когнитивные аспекты, так и нейропсихологические основы телесных навыков. При этом все чаще проводятся аналогии между процессом мышления и «исконно» телесными навыками. Проницательный британский психолог Фредерик Бартлетт провел аналогию между теми навыками, в которых задействованы разнообразные перцептивные функции, и теми, где преобладают исполнительские функции» [Гарднер Г. Структуры разума: Теория множественного интеллекта].

В результате восприятия внешней среды и прогнозирования процесса развития ситуации когнитивные механизмы человека подключают двигательные процессы тела. При этом, благодаря формированию сигналов обратной связи, происходит коррекция перемещения тела в пространстве, которое в той или иной степени является эффективным. Эффективность напрямую зависит от развитости пространственного интеллекта. Это ярко выражено у спортсменов, музыкантов, операторов – список можно продолжать, когда результатами тренировок становятся выверенные движения, плавно переходящие одно в другое, образуя целостную картину для восприятия. При этом очень важно иметь отточенное чувство времени, при котором каждому отдельному элементу отведен строго определенный временной интервал, а иначе целостность утрачивается, появляется ощущение суетности.

Еще сложнее складывается ситуация, когда речь заходит об управлении подвижным объектом. Если речь идет об управлении сравнительно небольшим объектом, например велосипедом, то искусный гонщик сливается с ним, составляя как бы единое целое и повторяя те же самые движения, что и велосипед на виражах. По мере увеличения размеров объекта управления чувство единства (целостности) ослабевает, но происходит это дифференцированно – в зависимости от уровня развитости пространственного и телесно-кинестетического интеллектов оператора. При управлении внушительными транспортными объектами, например крупнотоннажным судном, успехи достигаются длительными тренировками. В каждом случае отточенность действий – это результат тренировок. Получать практические навыки на реальном объекте чревато негативными последствиями. Для этой цели создаются тренажеры. Большинство таких тренажеров – это виртуальные модели судов, создаваемые компьютерными программами. Однако почувствовать динамику виртуальной модели весьма проблематично, поэтому существует другой тип тренажеров, где используются модели судов, выполненные в масштабе 1:25.

Такой тренажер существует во французском городе Гренобле, где проходят обучение капитаны и лоцманы. На моделях отрабатываются процессы расхождения судов без использования РЛС, на основе только визуальной информации, а также швартовки к причалу. В качестве ландшафта сымитированы Суэцкий канал и Великие озера Северной Америки. Особой популярностью тренажер в Гренобле пользуется у лоцманов. И это вполне объяснимо. Лоцману приходится в сжатое время адаптироваться к инерционным характеристикам судна, чтобы действия были эффективными и безопасными. Виртуальные же модели лишены этого правдоподобия, поэтому для виртуальных моделей приемлем уровень радиолокационного расхождения.

Особенности управления судами с системами AZIPOD

В книге [Снопков В.И., Конопелько Г.И., Васильева В.Б. Безопасность мореплавания] авторы принимаемые решения подразделяют на альтернативные, стереотипные, эвристические и случайные. Увеличение числа пропульсивных установок системы AZIPOD на судне ведет к потребности увеличить количество обратных связей и, следовательно, потребует увеличения объема оперативной памяти. В результате принятое решение может сместиться от альтернативного варианта (самого надежного, т.к. при этом задействована работа логико-математического обоснования) к стереотипным решениям (наработанным в процессе обучения) и – как самый ненадежный вариант – к случайным решениям.

Эвристические решения хороши в том случае, когда у оператора есть богатый опыт эксплуатации системы, основанный на логико-математических умозаключениях.

Случайные решения являются полной противоположностью эвристическим решениям, поскольку они продиктованы потребностью делать хоть что-то.

При использовании систем AZIPOD на современных судах, где может быть от одной до трех систем, действия оператора не подпадают под раз и навсегда созданные алгоритмы. Это наглядно демонстрирует потребность в сложных условиях переходить из автоматического управления DP в ручной режим, например при значительном увеличении волнения или позиционировании в ледовых условиях.

Многообразие факторов и дифференцированный характер их воздействия приводят к многообразию реакций оператора. В результате, по мнению американского психолога Уильяма Джеймса: «Мозг работает над полученной информацией почти так же, как скульптор над каменной глыбой. Из одной и той же глыбы каждый высекает свое».

Что вполне подтверждается расплывчатой формулировкой Правила 8 МППСС-72, где сказано, что действия должны быть уверенными, своевременными и соответствовать хорошей морской практике. Точно так же, управляя судном при помощи пропульсивной системы AZIPOD, в одной и той же ситуации каждый оператор будет следовать своему алгоритму, который во многом будет содержать элементы предыдущего опыта, и если предыдущий опыт был эффективным (успешным), то можно ожидать положительного результата.

Эвристические решения возникают в неожиданных ситуациях, но эти решения способны сформироваться только в том случае, если человек в достаточной степени наделен знаниями и опытом. Эффекты неожиданности желательно предвидеть и отрабатывать в процессе обучения.

При этом «в корне ошибочно было думать о едином разуме, едином интеллекте или единой способности к решению проблем».

Создание туннелей реальности в тренажерной подготовке

При создании любых тренажеров следует стремиться к тому, чтобы модель максимально отвечала требованиям реального объекта – это называется созданием туннеля виртуальной реальности, о чем пишет Роберт А. Уилсон [Квантовая психология].

Несомненно, что при создании виртуальных моделей пропульсивных установок системы AZIPOD должны быть задействованы тренажеры, благодаря которым отрабатываются начальные (черновые) навыки управления. Однако при этом следует понимать, что происходит двойное преломление реальности. Реальность преломляет проектировщик тренажера, который создает тренажер, сообразуясь со своими познаниями, возможностями и, что не менее важно, средствами потенциальных потребителей.

Второе преломление реальности – обучающийся, который «не воспринимает «реальности», но лишь принимает сигналы от окружающей среды, которые организует в форме предположений – причем так быстро, что даже не замечает, что это предположения».

«Кто-то назвал это «аксиомами бессилия», поскольку они не предсказывают будущее, которое преподносит скорее нам сюрпризы, нежили реальность». И далее, развивая мысль, Роберт А. Уилсон продолжает: «Если мы не можем описать что бы то ни было «как оно есть», но только «как оно представляется нашему уму», следовательно, у нас не может быть и чистой физики, а только нейрофизика – то есть физика, преломляемая через человеческую нервную систему. Кроме того, у нас не может быть и чистой философии, а лишь нейрофилософия. Если продолжать эту мысль, то получается, что не может быть и чистого судовождения, а лишь нейросудовождение. По большому счету так оно и есть – безопасность мореплавания осуществляется в рамках, ограниченных стандартами Правил, которые нельзя написать под каждого. Не зря раздаются голоса, что МППСС требуют пересмотра, и на то есть сегодня как объективные, так и субъективные причины.

Принятую информацию надлежит обработать на уровне сознания и на уровне подсознания. Так сколько же информации получает мозг человека? Некоторые данные о работе мозга приведены в таблице.

Таблица. «Человеческое тело состоит из 100 триллионов клеток», (триллион – единица с 12 нулями) Карл Саган «Космос»

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *