Би турбо и твин турбо в чем отличие
Отличие твин-турбо от би-турбо!
Твин-турбо и БиТурбо-это лишь разные коммерческие названия системы наддува, состоящей из 2-х турбин.
Название не отображает схему работы турбин (параллельное или последовательное(секвентальное)
Например, Мицубиши 3000 VR-4 имеет название TwinTurbo, там V6 и две турбины, каждая из которых питается от своих 3 цилиндров и дует в общий коллектор. Аналогично на Ауди S4 2.7, но там уже в названии BiTurbo. Аналогично на Мазере Джибли или Кватропорте.
На Тойоте Супра TwinTurbo рядная шестерка, и турбины там работают в хитром порядке, включаясь и выключаясь с помощью специальных перепускных клапанов (последовательно-параллельная схема)
На Субару В4-там две турбины, но работают они секвентально: на низких оборотах работает одна-маленькая-турбина, на высоких к ней подключается вторая-большая.
Би-турбо (biturbo) — система турбонаддува, состоящая из двух последовательно включаемых в работу турбин. В такой системе применяют 2 турбины, одну маленького размера другую большого, сделано это потому, что маленькая турбина раскручивается значительно быстрее, и вступает в работу первой, затем, при достижении более высоких оборотов мотора, раскручивается вторая, большая турбина, и добавляет значительно больший воздушный заряд. Таким образом прежде всего минимизируется лаг, образуется достаточно ровная разгонная характеристика автомобиля без рывка, свойственного большим турбинам, и достигается возможность использовать большие турбины на двигателях устанавлеваемых в автомобилях предназначенных не только для езды по гоночным трассам, но и по городским дорогам, где возможность крутить мотор постоянно есть не всегда, а получить больше мощности с мотора небольшого объема имеет смысл, по каким либо причинам, например связанным с законодательством по налогам данной страны на литраж мотора. Системы би-турбо весьма дороги, и по этому их установка, как правило в серийном производстве, производится на автомобили высокого класса, типа MASERATI или ASTON MARTIN (там компрессоры).
Такая система может быть установлена как на двигатель V6, каждая турбина будет висеть на своей головке по выхлопу, впуск общий, так и на рядном моторе например рядная 4-ка, в этом случае турбины можно включить по выхлопу как парралельно, 2 цилиндра на одну, 2 на другую, так и последовательно — сначала большая турбина, потом маленькая. Встречаются так же варианты, когда к маленькой турбине подходит выхлоп только с 2-х цилиндров, а к большой соответственно с 2-х оставшихся, и с выхода малой турбины.
Твин-турбо (twinturbo) — в данной системе в отличии от системы би-турбо, основной задачей является не снизить лаг, а добиться большей производительности по прокачиваемому воздуху либо большего давления наддува. Производительность по прокачиваемому воздуху необходима, в случаях когда мотор работая на высоких оборотах, потребляет воздух больше, чем турбина способна обеспечить, таким образом возможно падение давления наддува. В системах Twinturbo применяются две одинаковые турбины.
Соответственно производительность такой системы в 2 раза больше чем системы состоящей из одной турбины, при этом если применить 2 небольших турбины которые по производительности будут равны одной большой, то можно достигнуть эффекта снижения лага, при идентичной производительности. Существуют так же ситуации, когда производительности имеющихся в наличии больших турбин, оказывается недостаточно, например при построении мотора дрэгстера, тогда так же используется комбинация из 2-х турбин. Данная схема как и вариант biturbo может работать как на двигателях с V образным развалом головок, так и на рядных двигателях. Варианты включения турбин такие же как и в битурбо.
Существуют так же системы состоящие из 3-х и более одинаковых турбин, результат преследуется тот же что и в twinturbo. Такие системы в гражданском применении как правило не имеют распостранения, и применяются как правило, для построения мощных спортивных моторова, для автомобилей участвующих в драгрэйсинге.
В современных турбированных двигателях (в частности RRS V8 дизель) турбины имеют изменяемую геометрию крыльчаток. Это минимизирует проблему турбоямы и даёт высокий потенциал турбонадувва уже на самых низких оборотах коленвала двигателя. Кроме того это добавляет экономию топлива.
BI-TURBO И TWIN-TURBO – В ЧЕМ РАЗНИЦА?
В последние годы автомобильные компании все чаще начинают применять в своих моторах системы турбонаддува. Таким образом они компенсируют тенденцию к уменьшению рабочего объема и, как следствие, падения мощности. Но если раньше в двигателях использовали только одну турбину, то сейчас их может быть несколько. Давайте разберемся, что скрывается за загадочными терминами «bi-turbo» и «twin-turbo»?
ДЛЯ ПОВЫШЕНИЯ МОЩНОСТИ ДВИГАТЕЛЕЙ ИСПОЛЬЗУЕТСЯ ТРИ РАЗЛИЧНЫХ СИСТЕМЫ НАГНЕТАНИЯ ВОЗДУХА:
резонансный;
механический;
газодинамический.
Главным преимуществом подобной системы является отсутствие потерь мощности, связанных с отниманием части энергии от двигателя. Главным же её недостатком можно считать так называемый эффект «турбоямы».
Использование систем bi-turbo и Тwin-turbo позволяет практически полностью забыть о понятии турбоямы. С теоретической частью надувных систем мы разобрались, теперь нам нужно понять, для чего в таких системах используется второй турбокомпрессор.
Наиболее оправданно применение такой системы на V-образных двигателях, которые, как правило, имею большие рабочие объемы. На каждый блок такого мотора приходится по одному турбокомпрессору, и как следствие, каждая из турбин получает свой поток выхлопных газов. Параллельную установку турбин наиболее широко используют британские и немецкие производители автомобилей. Компания BMW, которая долгое время упорно отказывалась строить наддувные моторы, решила наверстать упущенное и устанавливает такую систему даже на свои рядные двигатели.
Отличие biturbo от twinturbo.
Многие мои друзья заблуждаютя, считая эти системы турбирования принципиально разными! Я решил порыться в итнернете и вот что попытаюсь разъяснить:
Твин-турбо и БиТурбо-это лишь разные коммерческие названия системы наддува, состоящей из 2-х турбин.
Название не отображает схему работы турбин (параллельное или последовательное(секвентальное)
Например, Мицубиши 3000 VR-4 имеет название TwinTurbo, там V6 и две турбины, каждая из которых питается от своих 3 цилиндров и дует в общий коллектор. Аналогично на Ауди S4 2.7, но там уже в названии BiTurbo. Аналогично на Мазере Джибли или Кватропорте.
На Тойоте Супра TwinTurbo рядная шестерка, и турбины там работают в хитром порядке, включаясь и выключаясь с помощью специальных перепускных клапанов (последовательно-параллельная схема)
На Субару В4-там две турбины, но работают они секвентально: на низких оборотах работает одна-маленькая-турбина, на высоких к ней подключается вторая-большая.
Би-турбо (biturbo) — система турбонаддува, состоящая из двух последовательно включаемых в работу турбин. В такой системе применяют 2 турбины, одну маленького размера другую большого, сделано это потому, что маленькая турбина раскручивается значительно быстрее, и вступает в работу первой, затем, при достижении более высоких оборотов мотора, раскручивается вторая, большая турбина, и добавляет значительно больший воздушный заряд. Таким образом прежде всего минимизируется лаг, образуется достаточно ровная разгонная характеристика автомобиля без рывка, свойственного большим турбинам, и достигается возможность использовать большие турбины на двигателях устанавлеваемых в автомобилях предназначенных не только для езды по гоночным трассам, но и по городским дорогам, где возможность крутить мотор постоянно есть не всегда, а получить больше мощности с мотора небольшого объема имеет смысл, по каким либо причинам, например связанным с законодательством по налогам данной страны на литраж мотора. Системы би-турбо весьма дороги, и по этому их установка, как правило в серийном производстве, производится на автомобили высокого класса, типа MASERATI или ASTON MARTIN (там компрессоры).
Такая система может быть установлена как на двигатель V6, каждая турбина будет висеть на своей головке по выхлопу, впуск общий, так и на рядном моторе например рядная 4-ка, в этом случае турбины можно включить по выхлопу как парралельно, 2 цилиндра на одну, 2 на другую, так и последовательно — сначала большая турбина, потом маленькая. Встречаются так же варианты, когда к маленькой турбине подходит выхлоп только с 2-х цилиндров, а к большой соответственно с 2-х оставшихся, и с выхода малой турбины.
Twin-Turbo и Bi-Turbo. В чем разница?
Всем приходилось слышать о двигателях, форсированных турбинами, а иногда и двумя. Такие моторы доступны далеко не всем из-за их высокой стоимости, однако они представляют большой интерес для каждого автолюбителя. Говоря об агрегате с двумя турбинами, вспоминаются такие словосочетания, как «Би-турбо» и «Твин-турбо». «А разве это не одно и то же?», — спросите вы. Будем разбираться вместе!
Существует такое мнение, что «Bi-Turbo» и «Twin-Turbo» — это просто названия одной и той же системы наддува, используемые разными коммерческими организациями. Да, с одной стороны так и есть, но это не единственное отличие этих систем.
Twin-Turbo
Основное принцип работы турбины – она создает давление воздуха, который поступает в цилиндры. Чем выше обороты двигателя, тем ниже эффективность турбины и как следствие – ниже мощность двигателя. Для того чтобы решить эту проблему, устанавливают вторую турбину. Она исключает падение мощности и обеспечивает эффективность работы на высоких оборотах. Турбины можно настроить по-разному:
1. Чтобы они работали параллельно.
2. Чтобы, когда одной турбины не хватает, раскручивалась вторая, восполняя потерю мощности.
Bi-Turbo
Эта система так же работает при наличии двух турбин, но в отличие от Твин-турбо, используются турбины разных размеров. Принцип работы схож с предыдущей системой: первая турбина «дует» на средних и малых оборотах, а та, которая побольше – на высоких. Это обеспечивает равномерный разгон автомобиля без потери мощности.
— Обе системы устанавливаются как на рядные, так и на V-образные двигатели.
— Система Би-турбо, за счет использования двух разных по размеру и мощности турбин, гарантирует ровный разгон, без резких перепадов мощности.
— Системы Твин-турбо позволяет снять максимальную мощность с двигателя. Но есть и весомый недостаток – так называемая «турбо-яма». Это короткая задержка, которая происходит в момент раскручивания второй более мощной турбины – резкий пинок при разгоне.
— В то же время, Би-турбо разгоняет автомобиль плавно и может использоваться не только на гоночных треках, но и при повседневной езде. Автомобили, оснащенные Твин-турбо, не могут себе это позволить.
К недостаткам обеих систем можно отнести их дороговизну и нелегкое техническое обслуживание.
Twinturbo или Biturbo? Ликбез. Часть 1.
Хотя публикаций, посвящённых данной теме, существует немало, мне ни одна из них не показалась достаточно полной, тогда как некоторые из них содержат очевидные заблуждения и только больше путают читателя. В этом материале попытаемся разобраться в различиях схем наддува с двумя турбокомпрессорами и ответить на самый простой и, как показывает практика, самый сложный вопрос: «В чём разница между Twinturbo и Biturbo?»
Давайте начнём именно с последнего вопроса, чтобы об этом узнали все читатели, а не только те, у кого хватило терпения дочитать до конца.
Итак, в чём разница между Twinturbo и Biturbo? — А разницы как раз нет! Точнее она есть, но ровно такая же, как между европейским Football и американским Soccer — в названии. Именно эта простая истина вызывает у некоторых «знатоков» волну негодования и становится началом очередного холивара. А между тем оба названия, что Twinturbo, что Biturbo — это общее название любой системы наддува с двумя турбокомпрессорами, вне зависимости от того, по какой схеме эти турбокомпрессоры работают. Просто разные автопроизводители склонны применять либо одно, либо другое название — на японских машинах чаще встречается Twinturbo, тогда как на европейских — Biturbo. Запомните этот абзац, мы к нему ещё вернёмся попозже, если кому-то необходимы доказательства вышеописанного. Мы же далее рассмотрим различные схемы работы двух турбокомпрессоров, их преимущества и недостатки.
Параллельное подключение (parallel twinturbo/biturbo)
При параллельной схеме работы используются два одинаковых турбокомпрессора, работающих симметрично. На каждый из них подаётся половина выхлопных газов двигателя как правило по индивидуальному выпускному коллектору и от определённых для каждой из турбин цилиндров. На V-образных двигателях каждый турбокомпрессор питается одним из рядов цилиндров. Нагнетаемый воздух поступает зачастую в общий впускной коллектор, откуда распределяется по всем цилиндрам двигателя, но в некоторых случаях каждый из компрессоров может питать только часть цилиндров — «свою» половину или «чужую».
На картинке изображена схема работы двух турбокомпрессоров на двигателе V6 6G72 автомобиля Mitsubishi 3000GT. Два одинаковых турбокомпрессора, каждый работает от своего ряда из трёх цилиндров и нагнетает воздух в общий коллектор.
Ниже на фото двигатель Renault Sport EF15 — полуторалитровый мотор V6 для Formula 1 с двумя параллельно работающими турбокомпрессорами и подачей нагнетаемого воздуха в раздельные впускные ресиверы на отдельный ряд цилиндров каждый.
Первопроходцем среди производителей серийных автомобилей с двумя турбокомпрессорами оказалась Maserati, выпустившая в 1981 году модель Maserati Biturbo с 2-литровым V6, оснащённым двумя турбокомпрессорами, работающими параллельно. Именно такая схема работы и компоновка до сих пор остаётся наиболее распространённой среди всех двигателей с двумя турбокомпрессорами. В то время в Италии на двигатели свыше 2-х литров объёма накладывались большие налоги и Алехандро де Томасо, купивший Maserati в 1976 году, таким образом нашёл решение, как сделать достаточно мощный двигатель малого объёма для недорогого спортивного автомобиля. Первая 2-литровая версия мотора выдавала 180 л.с., а более поздние и экспортные модификации объёмом до 2.8 литров — до 280 л.с. Так решения, применяемые на моторах Formula 1, попали на обычные автомобили.
Основной причиной замены одного большого турбокомпрессора на два небольших является желание уменьшить турбояму (диапазон оборотов, в течении которого турбокомпрессор не создаёт достаточно высокого давления наддува) и турболаг (задержка отклика турбокомпрессора на открытие дросселя). Два небольших высокооборотистых турбокомпрессора обыкновенно быстрее реагируют реагируют на дроссель и раньше выходят на рабочее давление наддува, чем один большой аналогичной производительности — инерционность большой турбинной и компрессорной крыльчаток определяет эту разницу. Однако при параллельной работе турбин преимущество это не так сильно заметно, т.к. каждая из двух турбин раскручивается только половиной выхлопных газов двигателя, в отличии от одной большой турбины. Тем не менее параллельная схема работы турбокомпрессоров получила наиболее широкое распространение по сравнению со всем остальными, и чаще всего она встречается на V-образных двигателях. Причина такого распространения — удачное компоновочное решение для двигателей, где размещение одного турбокомпрессора затруднительно. Взять те же самые V-образные двигатели, у которых конструктивно удобно размещать общий впускной коллектор в развале цилиндров, а выпускные коллектора раздельно, в противоположных сторонах двигателя. Связать при такой компоновке оба выпускных коллектора в условиях ограниченного подкапотного пространства довольно непросто. Вот, например, современный турбомотор Renault для Formula 1 2014 года: 1.6 литровый V6 с одним турбокомпрессором — как думаете, легко такую конструкцию будет вписать под капот обычного автомобиля?
Схожая ситуация и на рядных 6-цилиндровых двигателях — большая длина блока и недостаток свободного пространства накладывает ограничения на размер и форму выпускного коллектора для одного турбокомпрессора. Слева, для примера, заводской чугунный выпускной коллектор двигателя Nissan RB25DET с одной турбиной. Комментарии, думаю, излишни. А справа два коллектора с Nissan RB26ETT (Twinturbo). Чугунина, конечно, ограничивает полёт инженерной мысли, но с точки зрения равнодлинности и пропускной способности они явно выигрывают у коллектора слева.
При этом схема работы цилиндров рядной шестёрки (1-5-3-6-2-4) при таких простых и компактных 3-цилиндровых коллекторах обеспечивает каждому из двух турбокомпрессоров равномерную подачу отработавших газов, т.к. временные промежутки между последовательной работой первых трёх цилиндров одинаковы, как и между работой последних трёх (см. последовательность работы цилиндров)
И если на двигателе Nissan RB26ETT стояла задача увеличения мощности при сохранении низов, то на двигателе BMW N54 приоритетом были хорошие низы при достаточной высокой литровой мощности — два небольших турбокомпрессора низкого давления позволяют 3-литровой рядной шестёрке создавать ощущение езды на атмосферном двигателе большего объёма за счёт ровной моментной характеристики без заметной турбоямы и подхватов:
Вопреки общей практике, встречаются V-образные моторы и с двумя турбокомпрессорами в развале цилиндров, а не раздельно по бокам. Например, V-образная восьмёрка BMW S63TU. Здесь инженеры пошли дальше многих и, закрыв глаза на компоновочные сложности, добились максимально эффективной работы имеющихся турбокомпрессоров:
Сразу и не понятно, в чём выгода такого размещения, если не приглядеться к выпускному коллектору:
Видите, в отличии от подавляющего большинства других V-образных моторов, здесь каждый из двух твинскрольных турбокомпрессоров питается не одним рядом цилиндров, а отдельными цилиндрами обоих рядов. Давайте разберёмся, зачем это нужно. Для начала представим, что если скачки давления отработавших газов от всех восьми цилиндров наложить на одну временную ось, то получится примерно вот такой график:
Цилиндры, естественно работают не в прямой последовательности (1-2-3-4-…), а по несколько более запутанной схеме для обеспечения равномерности вращения коленвала и снижения вибраций. Обычно для двигателей V8 эта последовательность выглядит как 1-5-4-8-6-3-7-2. Если мы подключим турбокомпрессор только к одному ряду цилиндров (как это реализовано на предыдущей версии S63 и базовой модели двигателя — BMW N63), скачки давления выпускных газов в его коллекторе будут выглядеть вот так:
Отсутствие паузы между при переходе 2-1 и большая пауза при переходе 4-3 явно не способствуют равномерному вращению крыльчатки турбины. Согласно первому графику грамотнее питать один турбокомпрессор от цилиндров 1-4-6-7, а второй от цилиндров 5-8-3-2. Вот что получится для первого турбокомпрессора:
Как видите, равномерные промежутки между скачками давления выпускных газов. Не забываем, что на BMW S63TU стоят TwinScroll турбины (у которых улитка турбины на две разные по геометрии части, оптимизированные для разных режимов работы, для чего им требуется раздельное питание отработавшими газами), а значит два цилиндра будут питать одну из частей горячей улитки, а другие два цилиндра — вторую часть. Смотрим на коллектор BMW S63TU и видим, что и про это не забыли:
Импульсов стало меньше, но они так же равномерно поступают на каждую из половинок TwinScroll турбины. Вот так, путём нехитрых манипуляций можно увеличить отдачу имеющихся турбокомпрессоров как в плане раннего выхода на рабочее давление, так и в плане максимальной производительности. Эффект не сильно заметный, но именно из таких мелочей получают двигатели с наилучшими характеристиками.
Интересно, что BMW свои двигатели с двумя турбокомпрессорами называет «TwinPower Turbo», а ALPINA свои заряженные версии на тех же моторах — «Bi-turbo». Но самое забавное в том, что термин «TwinPower Turbo» BMW применяет и к двигателям с одним турбокомпрессором конструкции TwinScroll. Это лишний раз наглядно показывает, что выбор названия обусловлен только прихотью автопроизводителя, а совсем не конструктивной схемой.
Среди распространённых двигателей с двумя турбокомпрессорами, работающих по параллельной схеме, можно перечислить:
Maserati AM 4xx серия (V6 Biturbo, Biturbo/Ghibli II/Barchetta Stradale/Spyder/Quattroporte IV)
Mitsubishi 6A12TT и 6A13TT (V6 Twinturbo, Galant/Legnum VR-4);
Mitsubishi 6G72 (V6 Tvinturbo, GTO/3000GT);
Nissan VG30DETT (V6 Twinturbo, Fairlady Z/300ZX);
Nissan VR38DETT (V6 Twinturbo, GTR);
Nissan RB26DETT (R6 Twinturbo, Skyline GTR)
Audi 2.7 Biturbo (V6 Biturbo, A6/S4/RS4)
Audi 4.2 Biturbo (V8 Biturbo, RS6)
Audi 4.0 TFSI (V8 Twinturbo/Biturbo, S6/RS6/S7/RS7/A8/S8)
BMW N54 (R6 TwinPower Turbo, 135i/335i/535i/740i/Z4/X6/1M Coupe)
BMW N63/S63 (V8 TwinPower Turbo, 550i/650i/750i/X5/X5 M/X6/X6 M/M5/M6)
BMW N74 (V12 TwinPower Turbo, 760i)
Mercedes-Benz M278/M157/M158 (V8 Bi-turbo, S500/CL500/CLS500/E550/GL550/S63 AMG/CL53 AMG/CLS63 AMG/E63 AMG/SLK55 AMG)
Mercedes-Benz M275/M285/M158 (V12 Bi-turbo, S65 AMG/CL65 AMG/SL 65 AMG/ Maybach/Pagani)
Porsche 3.6/3.8 Turbo (H6 Twinturbo, 911 Turbo/Turbo S/GT2/GT2 RS)
Porsche 4.5/4.8 Turbo (V8 Twinturbo, Cayenne Turbo/Panamera Turbo)
Volvo B6284T/B6294T (R6 Twinturbo, S80/XC90)
Ford 3.5 EcoBoost (V6 Twinturbo, Explorer Sport/F-150)
Одним из самых необычный двигателей с параллельной схемой работы турбокомпрессоров, на мой взгляд, является двигатель прототипа Lancia ECV для ралли Group S. Посмотрите на фото и попробуйте определить, как устроен сам двигатель?
Да, это рядный 4-цилиндровый двигатель объёмом 1.8 литра, у которого впускные каналы подходят к камере сгорания сверху, в развале между распредвалами. При этом впускные и впускные клапаны расположены в камере сгорания в шахматном порядке, что позволяет эффективнее использовать площадь поверхности КС для увеличения их размера (т.к. впускные клапаны должны быть крупнее выпускных, при стандартной схеме половина площади КС занята впускными клапанами полностью, а выпускными только частично). Кроме того, как видно на схеме ниже, каждый из четырёх цилиндров питает отработавшими газами оба турбокомпрессора — таким образом на каждый их них отработавшие газы поступают более равномерным потоком, с меньшей амплитудой пульсаций. Это положительно сказывается на времени отклика турбокомпрессора и его КПД. Кроме того, такое расположение впускных и выпускных каналов способствует равномерному распределению тепла по ГБЦ и более эффективному охлаждению. Инженеры Fiat запатентовали такую конструкцию ГБЦ и дали ей название «Triflux».
Двигатели с параллельным двойным турбонаддувом встречаются и на многих суперкарах, например Ferrari F40, Jaguar XJ220, McLaren MP4-12C, Saleen S7, SSC Ultimate Aero TT, Vector M12 и других.
Преимущества систем с «параллельной» работой турбокомпрессоров:
— некоторое снижение турболага;
— более ранний выход турбокомпрессоров на рабочее давление наддува;
— простота конструкции и системы управления наддувом;
— удобная компоновка для V-образных и оппозитных двигателей.
Недостатки систем с «параллельной» работой турбокомпрессоров:
— недостаточно высокий выигрыш снижения турболага и спула турбины, что особенно заметно на высокофорсированных двигателях.
Из обычной параллельной схемы родилась одна разновидной систем наддува с двумя турбокомпрессорами, которую часто ошибочно называют последовательной или последовательно-параллельной, хотя она не является ни той, ни другой. Речь идёт о системе, получившей наибольшую известность по двигателям 2JZ-GTE на Toyota Supra. Система тоже называется «Twinturbo», но от рассмотренных ранее систем имеет одно важное отличие, благодаря чему подобная схема в английском варианте правильно называется «Sequential Parallel Twinturbo». Путаница возникает в том, что с английского языка и слово «serial», и «sequential» переводятся на русский одинаково – «последовательная». Однако из них только «serial» означает «последовательная» в том же смысле, что и «parallel» — «параллельная», т.е. по аналогии с электрикой. Понятие «sequential» в описании схем наддува означает «поочерёдная», «поэтапная» и имеется ввиду, что турбокомпрессоры или отдельные их части могут работать не одновременно, а вводиться в работу или выводиться из неё поочерёдно, согласно определённому алгоритму. Именно из-за этой тонкости перевода 99% людей путает названия система наддува, называя откровенно «параллельные» системы «последовательными» и наоборот. В итоге, стоящая на двигателе 2JZ-GTE система по-русски наиболее правильно называется «поэтапная параллельная система». Как она работает, можно посмотреть на схеме ниже.
На низких оборотах двигателя (на Toyota Supra это до 3500 об/мин), как видно на схеме, один из двух параллельно подключённых турбокомпрессоров (No.2 Turbocharger) бездействует, т.к. выход его горячей улитки перекрыт основным клапаном контроля выпускных газов (Exhaust Gas Control Valve) и вспомогательным перепускным клапаном выпуска (Exhaust Bypass Valve). Не имеющие прохода через второй турбокомпрессор, выпускные газы полностью направляются на первый турбокомпрессор по общему для них обоих коллектору. В итоге немаленький 3-литровый 6-цилиндровый двигатель достаточно легко раскручивает одну небольшую турбину — намного быстрее, чем две небольших турбины или, тем более, одну крупную. Чтобы воздух, нагнетаемый первым турбокомпрессором, не вышел обратно в атмосферу через бездействующий второй турбокомпрессор, компрессорная часть последнего отрезана от впускной системы специальным клапаном (Intake Air Control Valve).
При достижении некоторого контрольного значения давления наддува первым турбокомпрессором открывается Exhaust Bypass Valve, пропускающего часть отработавших газов через вторую турбину в выпускную систему первой турбины. Второй турбокомпрессор начинает раскручиваться. Происходит это довольно быстро, в диапазоне между 3500 и 3800 об/мин. Затем, между 3800 и 4000 об/мин система управления наддувом полностью открывает основной Exhaust Gas Control Valve, благодаря чему отработавшие газы могут свободно проходить через вторую турбину — теперь на обе турбины поступает равное количество отработавших газов:
К 4000 об/мин второй турбокомпрессор успевает набрать обороты и сравнять давление на выходе из компрессорной части с первым турбокомпрессором — заслонка клапана Intake Air Control Valve полностью открывается и второй турбокомпрессор полноценно включается в работу наравне с первым. Теперь это обычная банальная параллельная схема работы двух турбокомпрессоров с общим выпускным и впускным коллектором. Последовательной эту схему даже на первом этапе работы называть ошибочно, т.к. ни турбины, ни компрессоры последовательно не работают (забегая немного вперёд, уточню, что последовательно — это когда выход одного соединён со входом другого). Такое, в принципе несложное, решение позволили инженерам Toyota ощутимо уменьшить турболаг и раньше выходить на заметное давление наддува по сравнению с классической параллельной схемой работы турбокомпрессоров, сохранив при этом мощностной потенциал системы. При этом, несмотря на кажущуюся сложность управления, получилась очень надёжная система. На приведённом ниже графике приведёт пример разницы скорости выхода на рабочее давление турбокомпрессоров при обычной параллельной схеме (TWIN TURBO) и параллельной схемой с поочерёдным включением турбокомпрессоров в работу (TWO WAY TWIN TURBO). Результат, как говорится, на лицо:
Очень похожая система используется на роторно-поршневых двигателях 13B-REW от Mazda RX-7:
Здесь так же общий выпускной коллектор, два симметричных параллельно подключенных турбокомпрессора, общий впускной коллектор. На низкий оборотах полноценно работает только один турбокомпрессор (слева на схеме), т.к. вход в улитку второго перекрыт основным Turbo Control Valve (у Toyota этот клапан стоит не на входе, а на выходе турбины). Через небольшой перепускной канал (Turbo Pre-control Valve) на турбину бездействующего турбоколлектора подаётся немного отработавших газов для поддерживания некоторой начальной скорости вращения. Кое-как нагнетаемый этим турбокомпрессорм воздух через байпасный клапан гоняется по кругу, отрезанный от основной впускной системы воздушным клапаном (Charge Control Valve). Таки образом работает один турбокомпрессор от практически всех отработавших газов двигателя, а на втором лишь немного поддерживаются обороты. С повышением оборотов двигателя основной выпускной клапан на входе второй турбины (Turbo Control Valve) открывается и второй турбокомпрессор полноценно включается в параллельную работу с первым. Перепускной клапана на его компрессорной части закрывается, а путь для нагнетаемого им воздуха открывается при помощи Charge Control Valve. За счёт поддержания начальной скорости второго турбокомпрессора обеспечивается его более быстрое включение в общую работу.
Почти под копирку сделана система Twinturbo на двигателях Subaru EJ20TT c Subaru Legacy B4. Всё те же два параллельно подключенных турбокомпрессора, один из которых системой клапанов изолируется на низких оборотах, давая другому быстро раскрутиться и выйти на буст, а потом теми же клапанами включается в работу параллельно с уже работающим. На схемах ниже всё видно, пояснять уже не буду, т.к. аналогично вышеописанным системам:
Преимущества систем с «поэтапной параллельной» работой турбокомпрессоров:
— заметное снижение турболага в сравнении с обычной «параллельной» схемой;
— более ранний выход турбокомпрессоров на рабочее давление наддува;
Недостатки систем с «поэтапной параллельной» работой турбокомпрессоров:
— некоторая сложность конструкции и системы управления наддувом.
Прошу запомнить, что описанные чуть выше системы называются «sequential parallel» или «поэтапная параллельная» система Twinturbo/Biturbo и никогда их не путать с «serial» (последовательная), «sequential serial» (поэтапная последовательная) или «serial-parallel» (последовательно-параллельная).
А более подробно об «последовательной» схеме работы турбокомпрессоров и её разновидностях мы поговорим в следующей части, т.к. тут и так букофф уже немало накопилось.
А если у кого-то, пока я осиливаю вторую часть эпоса, мозги прогрелись и осталось желание ещё больше расширить границы познания, можно заглянуть сюда:
Доработка ГБЦ. Ликбез. Часть 1.
Доработка ГБЦ. Ликбез. Часть 2.
С уважением, Сергей “Samael” Сабитов