Биотехнология и биоинженерия в чем разница
Специальность «биотехнологии и биоинженерия»: описание, программа и особенности
Если век прошедший оставил за собой название космического, то нынешние времена характеризуются стремительным развитием новых технологий, внедрением в повседневную жизнь изобретений, которые еще не так давно считались выдумками писателей-фантастов. Наступает эра новых технологий. Молодые люди на пороге серьезного выбора профессии все чаще обращают внимание на перспективные специальности будущего. Именно к таким относится специальность «биотехнология». Что же именно изучает эта наука и чем предстоит заниматься специалисту, выбравшему такое заманчивое занятие?
Историческая справка
Название этой науки состоит из сложения трех греческих слов: «био» – жизнь, «текне» – искусство, «логос» – наука. Специальность «биотехнология» одновременно является новым перспективным направлением, и вместе с тем ее можно назвать древнейшей отраслью промышленного производства.
Специальности «биотехнология» и «биоинженерия» получили ускорение в развитии после ряда открытий в микробиологии и фармакологии. Ввод в эксплуатацию герметизированного оборудования, биореакторов дал толчок для создания противомикробных и антивирусных препаратов.
Связь наук
Современная химическая технология и биотехнология (специальность) объединяют биологические, химические и технические науки. Основой для новых изысканий в данной области становятся микробиология, генетика, химия, биохимия, молекулярная и клеточная биология, эмбриология. Значительную роль играют инженерные направления: робототехника, информационные технологии.
Специальность – биотехнология: где работать?
Промышленная биотехнология
Эта отрасль практикует использование частиц микроорганизмов, растений и животных для производства ценных продуктов, необходимых для жизнедеятельности человека. В эту группу входят специальности «пищевая биотехнологи», «фармацевтика», парфюмерная отрасль. Промышленные биотехнологии работают над созданием новых ферментов, антибиотиков, удобрений, вакцин и т.д. Основное направление деятельности биотехнолога на таких предприятиях – разработка биопрепаратов и соблюдение технологий их производства.
Молекулярная биотехнология
Специальность «биотехнология молекулярная» требует от профессионала углубленных знаний как общебиологического, так и инженерного направлений, современных компьютерных технологий. Специалисты с такой спецификой становятся исследователями в сфере нанотехнологии, клеточной инженерии, медицинской диагностики. Их ждут также сельскохозяйственные, фармацевтические, биотехнологические предприятия и контрольно-аналитические лаборатории, центры сертификации.
Биотехнологи – экологи и энергетики
Перспективы специальности
Чем могут удивить генетики в скором будущем?
Направления биоинженерии, которые круто изменят мир
Издержки профессии
Говоря о преимуществах и перспективах биотехнологии, нельзя не упомянуть о некоторых минусах науки. Речь идет о моральных аспектах, связанных с открытиями генной инженерии. Многие ученые с мировым именем, религиозные деятели предупреждают о том, что использовать возможности нанотехнологий необходимо с умом и под особым контролем. Генно-модифицированные продукты питания могут привести к непоправимым изменениям в генофонде человечества. Клонирование человека, появление людей, рожденных «в пробирке», ведут к новым проблемам и, возможно, к человеческим катастрофам.
Кто может стать биотехнологом?
Прежде всего, это человек, который любит природу, биологию, интересуется тайнами генетики. Кроме того, биотехнологу необходимы умение креативно мыслить, логика, наблюдательность, терпение и любознательность. Пригодятся такие качества, как целеустремленность, умение анализировать и систематизировать, аккуратность и широкая эрудированность.
Так как биоиженерия предполагает тесную связь с другими науками, будущему технологу необходимы в равной мере хорошие знания химии, математики, физики.
Где учат профессии?
Профориентация определена, абитуриент выбрал профессию биотехнолога: где учиться? Особенности специальности предполагают соответствующие факультеты, в зависимости от выбранной отрасли народного хозяйства. Факультеты биотехнологии есть практически во всех государственных университетах в нашей стране и за рубежом. Биотехнологов готовят технические, сельскохозяйственные, пищевые, технологические университеты по различным направлениям и специализациям.
Факультеты биотехнологии специальности предлагают следующие:
Биоинженер и биотехнолог, в чем разница
Биоинформатика – это новая отрасль науки, производства и сельского хозяйства. Ее цель – улучшение качеств растений, разработка новых медицинских препаратов, альтернативных видов топлива. Эти проблемы решают биоинженер и биотехнолог, в чем разница между этими профессиями, в каких областях они специализируются.
Кто такой биоинженер
По определению биоинженер – это работник, научный сотрудник, задачи которого изменять свойства живых организмов. Они работают над структурами ДНК, РНК, создают новые инструменты и аппаратуру для исследований. Генная инженерия – это подраздел отрасли. Биоинженер – это практик который применяет знания и опыт для решения технических проблем в области биологии.
Сферы, где эта профессия востребована:
Для обучения нужно поступить на соответствующий факультет. Пример – Московский государственный университет им. Ломоносова, специальность – биоинформатика. Срок обучения – 5 лет.
Биотехнолог, определение
Области деятельности – практическое применение знаний, или исследования. Их можно совмещать для улучшения результатов работы.
Отличия в профессиях
Разница между биотехнологом и биоинженером заключается в специализации. Первый – это общее определение профессии не включает разбивку по областям. Ее осваивают на первых курсах обучения, начиная с третьего года действует программа специализация. До этого момента можно изменить направление.
Биоинженер занимается изучением, изменением определенных живых форм, организмов. Это могут быть сельскохозяйственные культуры, медицинские бактерии, основа для разработки биологического топлива. Эти факторы влияют на уровень зарплаты и востребованности специалистов.
Заработные платы и рынок труда
Биоинформатика – востребованная специальность на рынке труда. Средняя зарплата в России составляет 45 000 руб. Если сотрудник занимается научной деятельностью, разрабатывает и внедряет новые технологии, размер заработной платы может достигать 170 000 руб.
На рынке труда вакансии по этой профессии в медицине и сельском хозяйстве. Молодому специалисту без опыта работы сложно найти должность. Поэтому после окончания обучения рекомендуется остаться на аспирантуре, попробовать себя в научной деятельности.
Разница между генной инженерией и биотехнологией
Содержание:
Генная инженерия против биотехнологии
Генная инженерия
Введение чужеродных генов в геном организма осуществляется с помощью технологий рекомбинантной ДНК (RDT); Первое использование RDT было продемонстрировано в 1972 году. Организм, которому был введен ген, называется генетически модифицированным организмом. Когда определенная пища производится с помощью генетически модифицированного организма, это будет генетически модифицированная пища. Производство продуктов питания и лекарств было основной практикой, осуществляемой с помощью генной инженерии. Кроме того, генная инженерия начала приносить пользу сельскохозяйственным культурам, так что может быть повышен иммунитет против насекомых или гербицидов.
У генетически модифицированных организмов нет больших шансов выжить в природе, если им не будут обеспечены желаемые условия или если ученые не будут продолжать управлять размерами их популяций. Это потому, что естественный отбор не произошел, а естественные условия могут быть катастрофическими для генетически модифицированных организмов.
Биотехнологии
В биотехнологии организмы не всегда модифицируются, чтобы отличаться друг от друга, но их естественные процессы улучшаются для получения оптимального продукта. Следовательно, организмы, которые используются в биотехнологии, могут не подвергаться серьезной опасности в естественных условиях.
В чем разница между генной инженерией и биотехнологией?
• Биотехнология имеет гораздо более долгую историю, чем генная инженерия.
• Генетически модифицированные организмы имеют очень небольшой шанс выжить в природе по сравнению с организмами, используемыми в биотехнологии.
• Биотехнология дала больше продуктов, чем генная инженерия.
Биотехнология. Генная инженерия
Молекулярный биолог Пробирочка расскажет про биотехнологию и все ее аспекты — от становления до прогресса
Автор
Редакторы
Комикс на конкурс «био/мол/текст»: Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, способствуют решению разнообразных задач. За счет генной инженерии совершен огромный шаг навстречу новым технологиям. В этой статье будет рассказано об истории открытия, становления и успехов биотехнологии, а также о тех вопросах, над которыми сейчас работают молекулярные биологи и биотехнологи.
Конкурс «био/мол/текст»-2018
Эта работа опубликована в номинации «Наглядно о ненаглядном» конкурса «био/мол/текст»-2018.
Генеральный спонсор конкурса — компания «Диаэм»: крупнейший поставщик оборудования, реагентов и расходных материалов для биологических исследований и производств.
Спонсором приза зрительских симпатий выступил медико-генетический центр Genotek.
Генная инженерия и биотехнология, будучи одними из главных направлений научно-технического прогресса, хорошо способствуют решению разнообразных задач.
В настоящее время биотехнология способна решить множество проблем медицины и создания пищевых продуктов. Также особая роль биотехнологии отводится в сельском хозяйстве. Ученые занимаются созданием и дальнейшим культивированием трансгенных растений и синтезом средств их защиты.
За счет генной инженерии был совершен огромный шаг навстречу новым технологиям. Однако ее развитие породило множество споров, в том числе и о ГМО. Несмотря на все слухи, польза ГМО явно видна. ГМ-растениям не страшен холод, пестициды или засуха. Помимо этого, использование генномодифицированных организмов может улучшить качество жизни населения стран третьего мира.
Самая главная молекула. Открытие ДНК
Несомненно, молекула ДНК занимает особое место в биологической науке. Ведь ДНК является носителем всей наследственной информации, сохраняет ее и передает следующему поколению. Именно с открытия знаменитой двойной спирали учеными Фрэнсисом Криком и Джеймсом Уотсоном (1953 г.) начался новый виток в истории человеческой культуры — эпоха генетики, молекулярной биологии, биотехнологии и биомедицины.
Значение ДНК колоссально, поскольку во всех живых организмах генетическая информация существует в виде особой структуры — двойной спирали. Рассмотрим ДНК с химической точки зрения. Молекула представляет собой достаточно длинную цепь из строительных блоков — нуклеотидов. А каждый нуклеотид состоит из азотистого основания, дезоксирибозы (особого сахара) и фосфатной группы.
Язык науки. Генетический алфавит
Двухцепочечная молекула ДНК хранит генетическую информацию, а генетическим кодом называют систему записи последовательности кодируемого белка нуклеотидами в гене.
Между языком генетики и любым другим языком можно для наглядности провести параллель. Как самый обычный текст, написанный, к примеру, на русском или английском языках, описывающий последовательность действий, так и запись информации в гене о последовательности аминокислот белка состоит из логически упорядоченных букв. То есть вся генетическая информация в молекуле записана набором из четырех букв — так называемым «алфавитом». Нуклеотиды обозначаются буквами А (аденин), Т (тимин), Ц (цитозин) и Г (гуанин). Они одинаковы у всех — от бактерий до человека. Различной будет лишь последовательность этих букв.
Свойства генетического кода:
Кольцо и спираль. Разнообразие форм
После открытия структуры ДНК началось активное развитие молекулярной биологии. Тем не менее, понимая строение ДНК на уровне химической структуры, никто не мог представить, что эта молекула может быть кольцевой. Как теперь известно, кольцевую ДНК имеют бактерии. Но кольцевая молекула есть и у человека, она находится в митохондриях.
Кольцевое строение ДНК наиболее эффективно для ее удвоения, то есть репликации. Репликация кольцевого типа — относительно простой процесс удвоения молекулы. Происходит разделение цепочек исходной молекулы и наращивание по принципу комплементарности новых цепочек по существующим. В результате получаются дочерние ДНК, которые окажутся идентичными копиями исходной. При кольцевом строении молекулы процесс удвоения протекает более точно.
Роль биотехнологии. Правда о ГМО
Переход биологии на молекулярный уровень дал начало развитию биотехнологии. Ее суть состоит в использовании методов генной инженерии для рыночного производства значимых биологических продуктов: новейших лекарств, реагентов для научных исследований и продуктов питания.
Для создания всего вышеперечисленного используют рекомбинантные белки. Это такие искусственно созданные и обладающие новыми свойствами белки, синтез которых контролируют новые гены, внедренные в клетки.
Рекомбинантные ДНК
ДНК — главный материал, с которым работает генный инженер. Но проверять результаты работы и производить рекомбинантный продукт придется с помощью живых организмов. Так, при создании рекомбинантных ДНК нельзя обойтись без кишечной палочки, которая подходит для производства некоторых биотехнологических продуктов. А при работе с эукариотическими генами и белками часто используют пекарские дрожжи. Главная особенность дрожжей — отличная способность к гомологичной рекомбинации. Дрожжи также удобно использовать при производстве рекомбинантных белков, так как они умеют редактировать матричную РНК, их продукты лишены токсичности, а у некоторых видов достаточно высокий выход продукта.
Вышеуказанные микроорганизмы стали моделями для изучения молекулярной организации и отработки генетических техник у прокариот и эукариот. Для обеспечения техники безопасности и удобства работы с рекомбинантными ДНК были созданы различные мутанты кишечной палочки. К примеру, следующие:
Для генных инженеров эта бактерия особо значима, так как:
Однако у кишечной палочки есть и ряд недостатков:
Постепенно увеличивалось влияние биологии на быт и жизнь человека в целом. Это привлекло к ней всеобщее внимание. Рост возможностей современной биотехнологии породило множество споров, в том числе и о ГМО.
Интересный факт
Человечество тысячи лет вмешивается в эволюционные процессы, проводя искусственный отбор организмов с полезными, значимыми для человека спонтанно возникшими мутациями — селекцию. К примеру, когда-то всем известной кукурузы (в современном понимании) и вовсе не существовало. Древние люди занимались скрещиваниями дикого родственника нынешней кукурузы — теосинте. И как выяснилось в результате исследований, геномы теосинте и кукурузы оказались уж очень схожими. Разницу между двумя видами определили несколько десятков генетических мутаций.
Многих пугает даже сама аббревиатура «ГМО», ведь каждый вкладывает в нее какой-то свой смысл, а у многих она ассоциируется с чем-то злым, опасным и даже смертоносным. Вероятнее всего, ГМО нагоняет страх на людей из-за непонимания, что же это такое.
ГМО — это организмы, геном которых был изменен при помощи генетической инженерии. Тем не менее факт остается фактом: за счет эволюционных процессов гены изменяются сами по себе у всех живых организмов. Отличие лишь одно: в процессе эволюции мы не можем контролировать процесс изменения генома, а в лаборатории, используя современные знания и технологии, способны изменять и улучшать гены.
Кстати говоря, у ученых-генетиков нет ни стимулов, ни целей создавать что-либо угрожающее здоровью всего человечества. Специалисты стремятся продвигать научный прогресс и производить те продукты, которые будут нужны людям.
Современная биотехнология. Генная инженерия сегодня
На данный момент перед учеными стоит ряд технологических задач. Можно изменить биологические организмы с помощью генноинженерных и клеточных методов для удовлетворения потребностей человека. К примеру, улучшить качество продуктов, получить новые виды растений и животных, придать различным живым организмам улучшенные свойства и создать необходимые лекарственные препараты за счет методов генетической инженерии.
Несомненно, в биотехнологии важное место занимает генная инженерия, позволяющая «кроить и шить» геномы подопытных организмов. Роль биотехнологии очень велика, поскольку ее способами производят генноинженерные белки (интерфероны, вакцины против серьезных заболеваний), вещества для фармакологии (лекарства, антибиотики, гормоны, антитела). А различные ферментные препараты применяют в производстве стиральных порошков, спирта. Особая роль биотехнологии — синтез средств для защиты растений и создание трансгенных растений
Трансгенные растения: вред или польза?
Люди могли изменять ДНК растений на протяжении многих лет. Скрещивая друг с другом растения с самыми лучшими свойствами, специалисты замечали, что эти свойства будут сохранены в потомстве. Так зародилась селекция.
Работа специалистов-селекционеров упростилась, когда в науке стали применять генетические законы Грегора Менделя. Позже было обнаружено, что возможно улучшить необходимые свойства растений при помощи мутаций. Число этих мутаций можно увеличивать за счет химикатов и рентгеновских лучей. В результате таких экспериментов было получено огромное количество разнообразных сортов растений. Важно знать, что такой метод может дать непредсказуемые результаты, поскольку, как известно, мутации спонтанны.
Конечно, из различных источников информации можно узнать о предполагаемом вреде трансгенных растений. И на второй план уходит одна из главных задач трансгенных организмов — спасение от нехватки важных питательных веществ и голода населения Земли. Существуют такие трансгенные растения, за счет которых удалось спасти человеческие жизни. Хорошим примером послужит золотой рис.
Золотой рис — генетически модифицированный сорт посевного риса, в зернах которого содержится огромное количество бета-каротина. Эти зерна имеют золотисто-желтый цвет. Считается, что это первая сельскохозяйственная культура, которая целенаправленно генетически модифицирована для улучшения пищевой ценности.
Вообще, при обширном выращивании, золотой рис может в несколько раз улучшить качество питания во многих странах (в том числе и в ряде стран третьего мира), где наблюдается нехватка витамина A. В организме человека витамин A производится из бета-каротина, который поступает преимущественно с растительной пищей. Для модификации риса использовали два гена: ген цветка нарцисса и ген бактерии Erwinia uredovora.
Разумеется, сегодня человечество нуждается в развитии новых технологий, а также ресурсов для жизни, удовлетворяющих потребности организма. Инновации вызывают опасения: сейчас некоторые люди не доверяют современным достижениям генетической инженерии.
Все же важно понимать, что новое — не обязательно плохое, всего лишь нужно попытаться разглядеть и положительные стороны, узнать больше о новых достижениях, открытиях, сделать последующие выводы исключительно на основе достоверных фактов. Именно тогда человечество может отграничиться от ряда споров, заблуждений, встать на путь новейших биологических открытий, сделать огромный рывок вперед.
Что такое биотехнология: будущее уже наступило
В последнее десятилетие термин «биотехнология» все чаще появляется в заголовках новостей, а открытия в этой области становятся причиной для жарких споров. Действительно, свое наибольшее развитие наука получила именно в последние годы, и этому в большей степени способствовал технический прогресс, но в повседневной жизни биотехнология используется на протяжении многих веков.
История развития биотехнологии
С древнейших времен биотехнология применялась человеком для изготовления вина, в сыроварении и других вариантах приготовления пищи. Биотехнологический процесс, а именно брожение, использовался еще в древнем Вавилоне для производства пива. Об этом свидетельствуют найденные при раскопках записи на дощечках. Но, несмотря на активное использование этих методов, процессы, лежавшие в основе этих производств, оставались загадкой.
Луи Пастер в 1867 году говорил, что такие процессы, как сквашивание и брожение, есть ничто иное, как итог жизнедеятельности микроорганизмов. Эдуард Бухнер дополнил эти предположения, доказав, что катализатором является бесклеточный экстракт, который содержит ферменты, вызывающие химическую реакцию.
Позже были сделаны сенсационные по тем временам открытия, которые помогли сформировать данную науку в современном ее понимании:
Годом появления термина стал 1919, после публикации манифеста венгерским агроэкономистом Карлом Эреки. Основываясь на имеющиеся в то время данные, под термином биотехнология подразумевалось применение микроорганизмов для ферментации продуктов питания.
Но, как известно, самые интересные открытия совершаются на стыке знаний, в случае биотехнологии, объединились пищевая и нефтеперерабатывающая промышленность. В 1970 году на практике была опробована технология производства белка из отходов нефтепромышленности.
Что такое биотехнология: термин и основные виды
Биотехнология – наука о способах создания различных веществ с использованием естественных биологических компонентов, будь-то микроорганизмы, животные или растительные клетки. По сути, это манипулирование живыми клетками для получения определенных результатов.
Основными направлениями развития науки являются:
Биоинженерия – дисциплина, направленная на расширение знаний в области медицины (лечение, укрепление здоровья) и инженерии
Биомедицина – узкоспециализированный раздел медицины, который с теоретической точки зрения изучает строение человеческого организма, диагностику патологических состояний и возможности их коррекции. Раздел медицины, занимающийся контролем и лечением биологических систем живых организмов на молекулярном уровне, называется наномедициной.
Гибридизация — процесс получения гибридов (растений, животных). В основе лежит принцип получения одной клетки (устойчивой к тем или иным условиям) путем объединения других клеток.
Сейчас у нас уже есть средства необходимые для того, чтобы прожить достаточно долго до тех пор, пока мы не станем бессмертны. Можно агрессивно применять существующие знания, чтобы кардинально замедлить процессы старения, и оставаться в жизнеспособном состоянии до того момента, когда станут доступны совершенно радикальные терапии по продлению жизни с помощью био- и нанотехнологий.
Ray Kurzweil (изобретатель, футуролог)
Высшим достижением биотехнологии является генная инженерия. Генная инженерия – совокупность знаний и технологий получения РНК и ДНК, выделения генов из клеток, осуществление манипуляций с генами и введение их в другие организмы. Это «управление» геномом живого существа или растения с целью получения заданных свойств. Например, руководствуясь знаниями в области генной инженерии, китайские ученые планируют массово применять метод «исправления» генома людей с онкологическими заболеваниями. Однако, запускать полномасштабные проекты пока никто не спешит, т.к. на сегодняшний день невозможно спрогнозировать последствия для организма в долгосрочном периоде.
Особого внимания заслуживает клонирование. Под этим процессом понимают появление нескольких генетических идентичных организмов путем бесполого (в том числе вегетативного) размножения. На сегодняшний день были клонированы не только растения, но и несколько десятков видов животных (овцы, собаки, кошки, лошади). О фактах клонирования человека пока нет данных, хотя, по мнению ученых, с технической стороны – к процессу все готово. Именно эти разработки стали самыми противоречивыми и обсуждаемыми мировой общественностью. Дело не только в вероятности получения неполноценных людей, но и в этической и религиозной стороне вопроса.
Сфера применения
Принципы биотехнологических процессов внедряют в производство всех отраслей:
Основной целью клеточной инженерии является культивирование животных и растительных клеток. Открытия в области клеточной инженерии позволили контролировать и регулировать продуктивность, качество, устойчивость к заболеваниям новых форм и линий животных и растений.
Инвестиции и развитие
Хотя биотехнологию сложно назвать «молодой» наукой, именно сегодня она находится в начале своего развития. Направления и возможности, которые открываются благодаря развитию этих знаний, могут быть бесконечными. Могут, если получат должное финансирование и поддержку. Основными инвестиционными участниками направления являются сами инженеры и биотехнологии, и это вполне объяснимо. Сегодня предлагается не сам продукт, а скорее идея, и возможные методы ее реализации.
И для осуществления этой задумки нужны десятки и сотни экспериментов, опыты и дорогостоящее оборудование. Не каждый инвестор готов идти только за идеей, рискуя своими вложениями. Но ведь не все верили и в мобильную связь, а сегодня она повсюду.
На данный момент число крупных компаний, занимающихся биотехнологическими разработками, невелико. К таковым относятся:
По мнению экспертов, наиболее привлекательным направлением для инвестиций в биотехнологию являются компании, занимающиеся секвенированием. Это общее название методов, которые позволяют установить последовательность нуклеотидов в молекуле ДНК. Расшифровка ДНК данных (секвенирование), дает возможность идентифицировать участки, которые отвечают за наследственные заболевания, и устранять их. Как только процесс будет доведен до совершенства, люди смогут не лечить симптомы, а избавляться от болезни. Это перевернет наше представление о диагностике, и принесет большие дивиденды тем, кто сумеет рассмотреть потенциал компании еще на этапе идеи.
Биотехнология: добро или зло?
Уже сегодня население планеты сталкивается с проблемой нехватки продуктов питания, и если численность людей продолжит расти, то в ближайшем будущем ситуация может стать критической. Знания о том, что такое биотехнология и как ее применять, помогают получать максимальные результаты урожайности, вне зависимости от внешних факторов. И эти достижения нельзя сбрасывать со счетов. Кроме того, неоспоримым доказательством пользы науки является изобретение антибиотиков, которые позволили контролировать, а в некоторых случаях и полностью искоренять, сотни болезней.
Но далеко не все оценивают науку однозначно. Существуют опасения, что отсутствие контроля может привести к необратимым последствиям. Например, уже сегодня продукты биотехнологии, такие как стероиды для спортсменов, становятся причиной для преждевременных сердечных патологий. В погоне за созданием супер-человека, победившего старость и болезни, общество рискует потерять свое естество.
Мы не остались жить в пещерах. Мы не остаемся в пределах нашей планеты. С помощью биотехнологии, генетического секвенирования, мы даже не собираемся ограничиваться рамками самой биологии.
Jason Silva (оратор, философ, телезвезда).
Развитие биотехнологии стало таким стремительным, что мировые государства столкнулись с проблемой отсутствия контроля на правовом уровне. Это стало причиной приостановления многих проектов, поэтому пока о клонировании человека и победе над смертью говорить преждевременно, и два конфронтационных лагеря могут беспрепятственно поддаваться философским размышлениям.