каким образом можно усилить магнитное поле катушки с током
Каким образом можно усилить магнитное поле катушки с током?
С помощью увеличения потребляемой катушкой мощности. И с помощью ферромагнитного сердечника.
Наибольшей мощности электромагнита можно достичь не только поместив в него магнитомягкий сердечник, но и поместив это все в чашку из такого же материала. Срез чашки должен быть на уровне керна. Так же желательно чтобы площадь среза чашки была равна площади керна.
Частота 10 Гц легко переводится в угловую частоту (напомню, что ω = 2пи*f).
Чем вызвано, не знаю. Но полюс, действительно, движется.
Однако инверсии магнитного поля поля бояться не стоит. Последняя была около 780 тысяч лет назад. Все живое выжило. Конечно, если она произойдет, социальная сфера сильно напряжется, но человечество выживет.
Катушки индуктивности и магнитные поля
После рассказа о применении конденсаторов логично было бы рассказать еще об одном представителе пассивных радиоэлементов – катушках индуктивности. Но рассказ о них придется начать издалека, вспомнить о существовании магнитного поля, ведь именно магнитное поле окружает и пронизывает катушки, именно в магнитном поле, чаще всего переменном, катушки и работают. Короче, это их среда обитания.
Магнетизм, как свойство вещества
Магнетизм является одним из важнейших свойств вещества, так же как, например, масса или электрическое поле. Явления магнетизма, впрочем, как и электричества, были известны давно, вот только тогдашняя наука не могла объяснить сути этих явлений. Непонятное явление получило название «магнетизм» по имени города Магнезия, что был когда-то в Малой Азии. Именно из руды, добываемой поблизости, и получались постоянные магниты.
Но постоянные магниты в рамках данной статьи не особо интересны. Коль скоро было обещано рассказать о катушках индуктивности, то речь пойдет, скорее всего, об электромагнетизме, ведь далеко не секрет, что даже вокруг провода с током существует магнитное поле.
В современных условиях исследовать явление магнетизма на начальном, хотя бы уровне, достаточно легко. Для этого надо собрать простейшую электрическую цепь из батарейки и лампочки для карманного фонаря. В качестве индикатора магнитного поля, его направления и напряженности можно воспользоваться обычным компасом.
Магнитное поле постоянного тока
Как известно, компас показывает направление на Север. Если поблизости расположить провода упомянутой выше простейшей схемы, и включить лампочку, то стрелка компаса несколько отклонится от своего нормального положения.
Подключив параллельно еще одну лампочку можно удвоить ток в цепи, отчего угол поворота стрелки несколько увеличится. Это говорит о том, что магнитное поле провода с током стало больше. Именно на таком принципе работают стрелочные измерительные приборы.
Во всех этих опытах компас играет роль пробной магнитной стрелки, подобно тому, как исследование постоянного электрического поля производится пробным электрическим зарядом.
На основе таких простейших опытов можно сделать заключение, что магнетизм появляется на свет благодаря электрическому току: чем этот ток сильней, тем сильнее магнитные свойства проводника. А откуда же тогда берется магнитное поле у постоянных магнитов, ведь к ним батарейку с проводами никто не подключал?
Фундаментальными научными исследованиями доказано, что и постоянный магнетизм основан на электрических явлениях: каждый электрон находится в собственном электрическом поле и обладает элементарными магнитными свойствами. Только в большинстве веществ эти свойства взаимно нейтрализуются, а у некоторых почему-то складываются в один большой магнит.
Конечно, на самом деле все не так примитивно и просто, но, в общем, даже постоянные магниты имеют свои чудесные свойства за счет движения электрических зарядов.
А какие они магнитные линии?
Магнитные линии можно увидеть визуально. В школьном опыте на уроках физики для этого на лист картона насыпаются металлические опилки, а внизу помещается постоянный магнит. Слегка постукивая по листу картона можно добиться картинки, показанной на рисунке 1.
Нетрудно видеть, что магнитные силовые линии выходят из северного полюса и входят в южный, при этом не разрываясь. Конечно, можно сказать, что как раз, наоборот, из южного в северный, но так уж принято, поэтому из северного в южный. Точно так же, как когда-то приняли направление тока от плюса к минусу.
Если вместо постоянного магнита сквозь картонку пропустить провод с током, то металлические опилки покажут его, проводника, магнитное поле. Это магнитное поле имеет вид концентрических круговых линий.
Для исследования магнитного поля можно обойтись и без опилок. Достаточно вокруг проводника с током перемещать пробную магнитную стрелку, чтобы увидеть, что силовые магнитные линии и впрямь представляют собой замкнутые концентрические окружности. Если перемещать пробную стрелку в сторону, куда ее отклоняет магнитное поле, то непременно вернемся в ту же точку, откуда начали движение. Аналогично, как пешком вокруг Земли: если идти никуда не сворачивая, то рано или поздно придешь на то же место.
Правило буравчика
Взаимодействие магнитных полей двух проводников с током
Если к каждому проводнику применить правило буравчика, то определив направление магнитного поля в каждом проводнике, можно с уверенностью сказать, что проводники с одинаковым направлением тока притягиваются, а их магнитное поля складываются. Проводники с токами разного направления взаимно отталкиваются, магнитное их поле компенсируется.
Катушка индуктивности
Если проводник с током выполнить в виде кольца (витка), то у него появляются свои магнитные полюса, северный и южный. Но магнитное поле одного витка, как правило, невелико. Гораздо лучших результатов можно добиться, намотав провод в виде катушки. Такую деталь называют катушкой индуктивности или просто индуктивностью. В этом случае магнитные поля отдельных витков складываются, взаимно усиливая друг друга.
На рисунке 5 показано, каким образом можно получить сумму магнитных полей катушки. Вроде бы можно запитать каждый виток от своего источника, как показано на рис. 5.2, но проще соединить витки последовательно (просто намотать одним проводом).
Совершенно очевидно, что чем большее количество витков у катушки, тем сильнее ее магнитное поле. Также магнитное поле зависит и от тока через катушку. Поэтому вполне правомерно оценивать способность катушки создавать магнитное поле просто умножив ток через катушку (А) на количество витков (W). Такая величина так и называется ампер – витки.
Катушка с сердечником
Магнитное поле, создаваемое катушкой, можно значительно увеличить, если внутрь катушки ввести сердечник из ферромагнитного материала. На рисунке 6 показана таблица с относительной магнитной проницаемостью различных веществ.
Например, трансформаторная сталь позволит сделать магнитное поле примерно в 7..7,5 тысяч раз сильней, чем при отсутствии сердечника. Другими словами, внутри сердечника магнитное поле будет вращать магнитную стрелку в 7000 раз сильнее (такое можно только представить мысленно).
В верхней части таблицы разместились парамагнитные и диамагнитные вещества. Относительная магнитная проницаемость µ указана относительно вакуума. Следовательно, парамагнитные вещества немного усиливают магнитное поле, а диамагнитные чуть-чуть ослабляют. В общем, особого влияния на магнитное поле эти вещества не оказывают. Хотя, на высоких частотах для настройки контуров иногда применяются латунные или алюминиевые сердечники.
В нижней части таблицы разместились ферромагнитные вещества, которые значительно усиливают магнитное поле катушки с током. Так, например, сердечник из трансформаторной стали сделает магнитное поле сильнее ровно в 7500 раз.
Чем и как измерить магнитное поле
Когда понадобились единицы для измерения электрических величин, то в качестве эталона взяли заряд электрона. Из заряда электрона была сформирована вполне реальная и даже ощутимая единица – кулон, а на ее основе все оказалось просто: ампер, вольт, ом, джоуль, ватт, фарада.
А что можно взять в качестве отправной точки для измерения магнитных полей? Каким-то образом привязать к магнитному полю электрона весьма проблематично. Поэтому в качестве единицы измерения в магнетизме принят проводник, по которому протекает постоянный ток в 1 А.
Характеристики магнитного поля
Основной такой характеристикой является напряженность (H). Она показывает, с какой силой действует магнитное поле на упомянутый выше пробный проводник, если дело происходит в вакууме. Вакуум предназначается для исключения влияния среды, поэтому эту характеристику – напряженность считают абсолютно чистой. За единицу напряженности принят ампер на метр (а/м). Такая напряженность появляется на расстоянии 16см от проводника, по которому идет ток 1А.
Напряженность поля говорит лишь о теоретической способности магнитного поля. Реальную же способность к действию отражает другая величина магнитная индукция (B). Именно она показывает реальную силу, с которой магнитное поле действует на проводник с током в 1А.
Если в проводнике длиной 1м протекает ток 1А, и он выталкивается (притягивается) с силой 1Н (102Г), то говорят, что величина магнитной индукции в данной точке ровно 1 тесла.
Магнитная индукция величина векторная, кроме численного значения она имеет еще и направление, которое всегда совпадает с направлением пробной магнитной стрелки в исследуемом магнитном поле.
Единицей магнитной индукции является тесла (ТЛ), хотя на практике часто пользуются более мелкой единицей Гаусс: 1ТЛ = 10 000Гс. Много это или мало? Магнитное поле вблизи мощного магнита может достигать нескольких Тл, около магнитной стрелки компаса не более 100Гс, магнитное поле Земли вблизи поверхности примерно 0,01Гс и даже ниже.
Магнитный поток
Вектор магнитной индукции B характеризует магнитное поле лишь в одной точке пространства. Чтобы оценить действие магнитного поля в некотором пространстве вводится еще такое понятие, как магнитный поток (Φ).
По сути дела он представляет собой количество линий магнитной индукции, проходящих через данное пространство, через какую-то площадь: Φ=B*S*cosα. Эту картину можно представить в виде дождевых капель: одна линия это одна капля (B), а все вместе это магнитный поток Φ. Именно так в общий поток соединяются силовые магнитные линии отдельных витков катушки.
В системе СИ за единицу магнитного потока принят Вебер (Вб), такой поток возникает, когда индукция в 1 Тл действует на площади 1 кв.м.
Магнитная цепь
Магнитный поток в различных устройствах (двигатели, трансформаторы и т.п.), как правило, проходит определенным путем, называемым магнитной цепью или просто магнитопроводом. Если магнитная цепь замкнута (сердечник кольцевого трансформатора), то ее сопротивление невелико, магнитный поток проходит беспрепятственно, концентрируется внутри сердечника. На рисунке ниже показаны примеры катушек с замкнутым и разомкнутым магнитопроводами.
Сопротивление магнитной цепи
Но сердечник можно распилить и вытащить из него кусочек, сделать магнитный зазор. Это увеличит общее магнитное сопротивление цепи, следовательно, уменьшит магнитный поток, а в целом уменьшится индукция во всем сердечнике. Это все равно как в электрическую цепь последовательно запаять большое сопротивление.
Если получившийся зазор перекрыть куском стали, то получится, что параллельно зазору подключили дополнительный участок с меньшим магнитным сопротивлением, что и восстановит нарушенный магнитный поток. Это очень напоминает шунт в электрических цепях. Кстати, для магнитной цепи также существует закон, который называют законом Ома для магнитной цепи.
Через магнитный шунт пойдет основная часть магнитного потока. Именно это явление и используется в магнитной записи звуковых или видеосигналов: ферромагнитный слой ленты перекрывает зазор в сердечнике магнитных головок, и весь магнитный поток замыкается через ленту.
Направление магнитного потока, создаваемого катушкой, можно определить, воспользовавшись правилом правой руки: если четыре вытянутых пальца указывают направление тока в катушке, то большой палец покажет направление магнитных линий, как показано на рисунке 13.
Принято считать, что магнитные линии выходят из северного полюса и заходят в южный. Поэтому большой палец в данном случае указывает расположение южного полюса. Проверить так ли это, можно опять же с помощью стрелки компаса.
Как работает электродвигатель
Известно, что электричество может создавать свет и тепло, участвовать в электрохимических процессах. После знакомства с основами магнетизма можно рассказать о том, как работают электродвигатели.
Электродвигатели могут быть самой разной конструкции, мощности и принципа действия: например постоянного и переменного тока, шаговые или коллекторные. Но при всем многообразии конструкций принцип действия основан на взаимодействии магнитных полей ротора и статора.
Для получения этих магнитных полей по обмоткам пропускают ток. Чем больше ток, и чем выше магнитная индукция внешнего магнитного поля, тем мощнее двигатель. Для усиления этого поля используются магнитопроводы, поэтому в электрических двигателях так много стальных деталей. В некоторых моделях двигателей постоянного тока используются постоянные магниты.
Здесь, можно сказать, все понятно и просто: пропустили по проводу ток, получили магнитное поле. Взаимодействие с другим магнитным полем заставляет этот проводник двигаться, да еще и совершать механическую работу.
Направление вращения можно определить по правилу левой руки. Если четыре вытянутых пальца показывают направление тока в проводнике, а магнитные линии входят в ладонь, то отогнутый большой палец укажет направление выталкивания проводника в магнитном поле.
Как можно усилить магнитные свойства катушки током
Электрический ток и магнитный поток
Интенсивность магнитного поля можно определить числом линий магнитного потока, которое приходится на единицу площади. Магнитное поле возникает всюду, где протекает электрический ток, причем магнитный поток в воздухе пропорционален последнему. Прямой провод, несущий ток, можно согнуть в виток. При достаточно малом радиусе витка это приводит к возрастанию магнитного потока. При этом сила тока не увеличивается.
Эффект концентрации магнитного потока можно еще усилить, увеличивая количество витков, т. е. скручивая провод в катушку. Справедливо и обратное. Магнитное поле катушки с током можно ослабить, если уменьшить количество витков.
Выведем важное соотношение. В точке максимальной плотности магнитного потока (в ней на единицу площади приходится больше всего линий потока) соотношение между электрическим током I, числом витков провода n и магнитным потоком В выражается так: In пропорционально В. Ток в 12 А, текущий по катушке из 3 витков, создает точно такое же магнитное поле, как и ток в 3 А, текущий по катушке из 12 витков. Это важно знать, решая практические задачи.
Вариант 1
1. Приведите примеры промышленного использования электромагнитов.
2. Какие изменения в свойствах электромагнита произойдут, если внутрь катушки внести железный стержень?
3. На рисунке указаны полюса источника тока, к которому присоединен электромагнит. Какой полюс электромагнита располагается наверху?
4. На рисунке указано положение северного полюса электромагнита. Где располагается положительная клемма источника тока?
5. Почему северный полюс магнитной стрелки показывает на север?
Соленоид
Катушка из намотанного провода, создающая магнитное поле, называется соленоидом. Провода можно наматывать на железо (железный сердечник). Подойдет и немагнитная основа (например, воздушный сердечник). Как вы видите, можно использовать не только железо, чтобы создать магнитное поле катушки с током. С точки зрения величины потока любой немагнитный сердечник эквивалентен воздуху. То есть приведенное выше соотношение, связывающее ток, число витков и поток, в этом случае выполняется достаточно точно. Таким образом, магнитное поле катушки с током можно ослабить, если применить эту закономерность.
Использование железа в соленоиде
Для чего в соленоиде используется железо? Его наличие влияет на магнитное поле катушки с током в двух отношениях. Оно увеличивает магнитное действие тока, часто в тысячи раз и более. Однако при этом может нарушаться одна важная пропорциональная зависимость. Речь идет о той, которая существует между магнитным потоком и током в катушках с воздушным сердечником.
Микроскопические области в железе, домены (точнее, их магнитные моменты), при действии магнитного поля, которое создается током, строятся в одном направлении. В результате при наличии железного сердечника данный ток создает больший магнитный поток на единицу сечения провода. Таким образом, плотность потока существенно возрастает. Когда все домены выстраиваются в одном направлении, дальнейшее увеличение тока (или числа витков в катушке) лишь незначительно повышает плотность магнитного потока.
Расскажем теперь немного об индукции. Это важная часть интересующей нас темы.
Главное.
Для перевода кратных и дольных единиц измерения в СИ нужно помнить степень 10, которую показывает приставка (например кило-, санти-, и т. д.).
Несколько основных кратных единиц измерения:
Кило — [к] — 10³. Пример: 1 км = 10³ м (километр).
Мега — [М] — 10⁶. Пример: 1 МПа = 10⁶ Па (мегапаскаль).
Гига — [Г] — 10⁹. Пример: 1 ГГц = 10⁹ Гц (гигагерц).
Тера — [Т] — 10¹². Пример: 1 ТВ = 10¹² В (терравольт).
Пета — [П] — 10¹⁵. Пример: 1 ПН = 10¹⁵ Н (петаНьютон).
Другие используются достаточно редко.
Несколько основных дольных единиц измерения:
Деци — [д] — 10⁻¹. Пример: 1 дм = 10⁻¹ м (дециметр).
Санти — [c] — 10⁻². Пример: 1 см = 10⁻² м (сантиметр).
Милли — [м] — 10⁻³. Пример: 1 мН = 10⁻³ Н (миллиньютон).
Микро — [мк] — 10⁻⁶. Пример: 1 мкКл = 10⁻⁶ Кл (микрокулон).
Нано — [н] — 10⁻⁹. Пример: 1 нс = 10⁻⁹ с (наносекунда).
Пико — [п] — 10⁻¹². Пример: 1 пФ = 10⁻¹² Ф (пикофарад).
Другие используются также достаточно редко.
Индукция магнитного поля катушки с током
Хотя магнитное поле соленоида с железным сердечником гораздо сильнее магнитного поля соленоида с воздушным сердечником, величина его ограничена свойствами железа. Размер того, которое создается катушкой с воздушным сердечником, теоретически не имеет предела. Однако, как правило, получать огромные токи, необходимые для создания поля, сравнимого по величине с полем соленоида с железным сердечником, очень трудно и дорого. Не всегда следует идти этим путем.
Что будет, если изменить магнитное поле катушки с током? Это действие может породить электрический ток точно так же, как ток создает магнитное поле. При приближении магнита к проводнику магнитные силовые линии, пересекающие проводник, индуцируют в нем напряжение. Полярность индуцированного напряжения зависит от полярности и направления изменения магнитного потока. Этот эффект значительно сильнее проявляется в катушке, чем в отдельном витке: он пропорционален числу витков в обмотке. При наличии железного сердечника индуцированное напряжение в соленоиде увеличивается. При таком способе необходимо движение проводника относительно магнитного потока. Если проводник не будет пересекать линии магнитного потока, напряжение не возникнет.
Постоянные магниты. Что это?
Китайцы, как и греки, тоже замечали интересное свойство некоторых минералов притягивать к себе железосодержащие предметы. Слово «притягивать» китайцы ассоциируют со словами «прижиматься», «любить» и поэтому назвали такие минералы «чу-ши», что значит «любящий камень». Так как эти минералы создала природа, и человек не мог повлиять на естественное действие камней, их стали называть постоянными магнитами.
Магнитный железняк.
Древние люди приписывали магнитному железняку свойства «живой души». Минерал, по их словам, устремлялся к железу, как собака к куску мяса. Ученые объясняют отношение древних к явлениям природы незнанием физики.
На самом деле, все заключается в особом виде материи – поле.
Магнитное поле и притягивает к постоянному магниту железные предметы, ведь, например, мелкие гвоздики или кнопки устремляются к магниту даже без соприкосновения с ним, а на некотором расстоянии.
Магнетит (природный магнитный железняк) проявляет свойства притягивания не очень сильно. Человеком на его основе созданы искусственные магниты с более мощным магнитным полем. В качестве материала в них используются такие металлы, как кобальт, никель и, конечно же, железо. Такие металлы способны намагничиваться, попадая в магнитное поле, а потом становятся самостоятельными магнитами.
Разные формы искусственных магнитов. Источник
Какую бы форму не имел магнит, у него есть участки, где наиболее сильно проявляются магнитные свойства. Эти участки называют магнитными полюсами. У каждого, даже самого маленького магнита, есть два полюса. Современные технологии позволяют намагничивать металлические предметы так, что у них образуется и 4 и 6 полюсов.
Увидеть, как по-разному притягиваются железные опилки к магниту, можно на простейшем опыте с дугообразным школьным магнитом. Просто поднести к опилкам магнит, опилки тут же «прилипнут» к нему:
Дугообразный магнит.
Полюсами такого магнита будут края дуги, где больше всего скопилось железных опилок.
У полосового магнита, форма которого прямоугольный параллелепипед, полюса находятся далеко друг от друга. Чем ближе к середине, тем меньше проявляются магнитные свойства.
Полосовой магнит.
Как получают энергию
Электрические генераторы вырабатывают ток на основе тех же принципов. Обычно магнит вращается между катушками. Величина индуцированного напряжения зависит от величины поля магнита и скорости его вращения (они определяют скорость изменения магнитного потока). Напряжение в проводнике прямо пропорционально скорости магнитного потока в нем.
Во многих генераторах магнит заменен соленоидом. Для того чтобы создать магнитное поле катушки с током, соленоид подключают к источнику тока. Какой в этом случае будет электрическая мощность, вырабатываемая генератором? Она равна произведению напряжения на силу тока. С другой стороны, взаимосвязь тока в проводнике и магнитного потока позволяет использовать поток, создаваемый электрическим током в магнитном поле, для получения механического движения. По этому принципу работают электродвигатели и некоторые электроизмерительные приборы. Однако для создания движения в них необходимо затрачивать дополнительную электрическую мощность.
Электромагниты и их применение
Электромагниты используют настолько повсеместно, что, пожалуй, трудно назвать электромеханический прибор, в котором бы они не применялись. Двери в подъездах удерживаются электромагнитами.
Электродвигатели самых различных устройств преобразуют электрическую энергию в механическую с помощью электромагнитов. Звук в колонках создается с помощью магнитов. И это далеко не полный список. Огромное количество удобств современной жизни обязано своим существованием применению электромагнитов.
Сильные магнитные поля
В настоящее время, используя явление сверхпроводимости, удается получать невиданной интенсивности магнитное поле катушки с током. Электромагниты могут быть очень мощными. При этом ток протекает без потерь, т. е. не вызывает нагрева материала. Это позволяет применять большое напряжение в соленоидах с воздушным сердечником и избежать ограничений, обусловленных эффектом насыщения. Очень большие перспективы открывает такое мощное магнитное поле катушки с током. Электромагниты и их применение не зря интересуют множество ученых. Ведь сильные поля могут использоваться для движения на магнитной «подушке» и создания новых видов электродвигателей и генераторов. Они способны высокую мощность при малой стоимости.
Энергия магнитного поля катушки с током активно используется человечеством. Она уже долгие годы широко применяется, в частности на железных дорогах. О том, как используются магнитные линии поля катушки с током для регулирования движения поездов, мы сейчас и поговорим.
Регулирование движения на железной дороге
Движение плоского магнита включает сигнальный звонок или сирену. Далее происходит следующее. Через пару секунд кабина машиниста проходит над электромагнитом, который связан со светофором. Если тот дает поезду зеленую улицу, то электромагнит оказывается под напряжением и ось постоянного магнита в вагоне поворачивается в свое первоначальное положение, выключая сигнал в кабине. Когда же на светофоре горит красный или желтый свет, электромагнит бывает выключен, и тогда после некоторой задержки автоматически включается тормоз, если, конечно, это забыл сделать машинист. Тормозная цепь (как и звуковой сигнал) подключается к сети с момента поворота оси магнита. Если магнит во время задержки возвращается в первоначальное положение, то тормоз не включается.
Указатель юга и севера – компас. Полюсы магнитные
«Указатель юга» — так называли древние китайцы свое изобретение. Это был прибор в форме ложки, изготовленный из природного магнита. Ложка могла вращаться вокруг вертикальной оси.
Древний китайский компас.
Ручка ложки указывала южное направление. Она была северным полюсом ложки-магнита.
Развитие науки не остановилось, и современные компасы уже имеют другой вид:
Разные виды компасов.
Магнитная стрелка, главный элемент компаса, — это постоянный магнит и имеет два полюса. Конец стрелки, указывающий на географический Север, называют северным (N), а противоположный – южным (S) полюсом. Отсюда и название полюсов различных магнитов.
Раскраска магнитов в красный и синий цвета условна, реже используются и другие цвета. Существенным является то, что полюсы магнитов существуют только парами. Если распилить, например, полосовой магнит, получатся два полосовых магнита, и у них будет снова по два полюса: северный и южный.
В школьных лабораторных работах используются маленькие магниты на подставке, которые насаживаются на тонкую иглу и могут свободно вращаться вокруг этой иглы. Такие устройства называются магнитными стрелками, как подобие стрелок компасов.
С помощью стрелок изучается взаимодействие полюсов магнитов. Если приблизить стрелки друг к другу, они начинают поворачиваться и установятся по следующему правилу:
Земной шар является огромным магнитом, у которого есть свои полюсы. Но нельзя путать магнитные полюсы Земли с географическими. Согласно правилу, синий (северный) конец стрелки должен поворачиваться к Южному полюсу земного шара, так как притягиваются разноименные полюсы. Да, действительно, это так. Южный магнитный полюс Земли находится вблизи Северного географического полюса, но не в той же точке, а чуть в стороне, на острове Принца Уэльского. Северный магнитный полюс находится в Антарктиде, где и Южный географический.
Источник
Месторасположение магнитных полюсов Земли не остается постоянным. Полюсы смещаются на расстояние нескольких десятков километров в год.
Очень широк список областей, где применяются магниты:
От изучения природных магнитных явлений человек давно шагнул к элетромагнитным явлениям, без чего невозможно развитие знаний об электричестве и электрическом токе.