какого вида магнитное поле создается в трансформаторах
Устройство и принцип работы трансформатора
Для преобразования электрического напряжения одной величины в электрическое напряжение другой величины, то есть для преобразования электрической мощности, применяют электрические трансформаторы.
Трансформатор может преобразовывать лишь переменный ток в переменный ток, поэтому для получения постоянного тока, переменный ток с трансформатора при необходимости выпрямляют. Для этой цели служат выпрямители.
Так или иначе, любой трансформатор (будь то трансформатор напряжения, трансформатор тока или импульсный трансформатор) работает благодаря явлению электромагнитной индукции, которое проявляет себя во всей красе именно при переменном или импульсном токе.
В простейшем виде однофазный трансформатор состоит всего из трех основных частей: ферромагнитного сердечника (магнитопровода), а также первичной и вторичной обмоток. В принципе обмоток у трансформатора может быть и больше двух, но минимум их две. В некоторых случаях функцию вторичной обмотки может нести на себе часть витков первичной обмотки (см. виды трансформаторов), но подобные решения встречаются достаточно редко по сравнению с обычными.
Главная часть трансформатора — ферромагнитный сердечник. Когда трансформатор работает, то именно внутри ферромагнитного сердечника присутствует изменяющееся магнитное поле. Источником изменяющегося магнитного поля в трансформаторе служит переменный ток первичной обмотки.
Напряжение на вторичной обмотке трансформатора
Известно, что любой электрический ток сопровождается магнитным полем, соответственно переменный ток сопровождается переменным (изменяющимся по величине и направлению) магнитным полем.
Таким образом, подав в первичную обмотку трансформатора переменный ток, получим изменяющееся магнитное поле тока первичной обмотки. А чтобы магнитное поле было сконцентрировано главным образом внутри сердечника трансформатора, данный сердечник изготавливают из материала с высокой магнитной проницаемостью, в тысячи раз большей чем у воздуха, чтобы основная часть магнитного потока первичной обмотки замкнулась бы именно внутри сердечника, а не по воздуху.
Таким образом переменное магнитное поле первичной обмотки сконцентрировано в объеме сердечника трансформатора, который изготавливают из трансформаторной стали, феррита или другого подходящего материала, в зависимости от рабочей частоты и назначения конкретного трансформатора.
Вторичная обмотка трансформатора находится на общем сердечнике с его первичной обмоткой. Поэтому переменное магнитное поле первичной обмотки пронизывает также и витки вторичной обмотки.
А явление электромагнитной индукции как раз и заключается в том, что изменяющееся во времени магнитное поле наводит в пространстве вокруг себя изменяющееся электрическое поле. И поскольку в данном пространстве вокруг изменяющегося магнитного поля находится провод вторичной обмотки, то индуцированное переменное электрическое поле действует на носители заряда внутри этого провода.
Данное действие электрическим полем вызывает в каждом витке вторичной обмотки ЭДС. В результате между выводами вторичной обмотки появляется переменное электрическое напряжение. Когда вторичная обмотка включенного в сеть трансформатора не нагружена, трансформатор работает в режиме холостого хода.
Работа трансформатора под нагрузкой
Если же ко вторичной обмотке работающего трансформатора подключена некая нагрузка, то во всей вторичной цепи трансформатора возникает ток через нагрузку.
Данный ток порождает свое собственное магнитное поле, которое, по закону Ленца, имеет такое направление, что противодействует «причине, его вызывающей». То есть магнитное поле тока вторичной обмотки в каждый момент времени стремится уменьшить увеличивающееся магнитное поле первичной обмотки или же стремится поддержать магнитное поле первичной обмотки когда оно уменьшается, оно всегда направлено навстречу магнитному полю первичной обмотки.
Таким образом, когда вторичная обмотка трансформатора нагружена, в его первичной обмотке возникает противо-ЭДС, заставляющая первичную обмотку трансформатора потреблять из питающей сети больше тока.
Соотношение витков первичной N1 и вторичной N2 обмоток трансформатора определяет соотношение между его входным U1 и выходным U2 напряжениями и входным I1 и выходным I2 токами, при работе трансформатора под нагрузкой. Данное соотношение называется коэффициентом трансформации трансформатора:
Коэффициент трансформации больше единицы если трансформатор понижающий, и меньше единицы — если трансформатор повышающий.
Трансформатор напряжения является разновидностью понижающего трансформатора, предназначенной для гальванической развязки цепей высокого напряжения от цепей низкого напряжения.
Обычно, когда речь идет о высоком напряжении, имеют ввиду 6 и более киловольт (на первичной обмотке трансформатора напряжения), а под низким напряжением понимают величины порядка 100 вольт (на вторичной обмотке).
Трансформатором напряжения можно назвать в принципе и любой силовой трансформатор, применяемый для преобразования электрической мощности.
У трансформатора тока первичная обмотка, состоящая обычно всего из одного витка, включается последовательно в цепь источника тока. Данным витком может выступать участок провода цепи, в которой необходимо измерить ток.
Провод просто продевается через окно сердечника трансформатора и становится этим самым единственным витком — витком первичной обмотки. Вторичная же его обмотка, имеющая много витков, подключается к измерительному прибору, отличающемуся малым внутренним сопротивлением.
Трансформаторы данного типа используются для измерения величин переменного тока в силовых цепях. Здесь ток и напряжение вторичной обмотки оказываются пропорциональны измеряемому току первичной обмотки (токовой цепи).
Трансформаторы тока широко применяются в устройствах релейной защиты электроэнергетических систем, поэтому обладают высокой точностью. Они делают измерения безопасными, так как гальванически надежно изолируют измерительную цепь от первичной цепи (обычно высоковольтной — десятки и сотни киловольт).
Данный трансформатор предназначен для преобразования тока (напряжения) импульсной формы. Короткие импульсы, обычно прямоугольные, подаваемые на его первичную обмотку, заставляют трансформатор работать практически в режиме переходных процессов.
Такие трансформаторы используются в импульсных преобразователях напряжения и других импульсных устройствах, а также в качестве дифференцирующих трансформаторов.
Применение импульсных трансформаторов позволяет снизить вес и стоимость устройств, в которых они применяются просто в силу повышенной частоты преобразования (десятки и сотни килогерц) по сравнению с сетевыми трансформаторами, работающих на частоте 50-60 Гц. Прямоугольные импульсы, у которых длительность фронта много меньше длительности самого импульса, нормально трансформируются с малыми искажениями.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Как устроен и работает трансформатор, какие характеристики учитываются при эксплуатации
В энергетике, электронике и других отраслях прикладной электротехники большая роль отводится преобразованиям электромагнитной энергии из одного вида в другой. Этим вопросом занимаются многочисленные трансформаторные устройства, которые создаются под различные производственные задачи.
Одни из них, имеющие наиболее сложную конструкцию, выполняют трансформацию мощных потоков высоковольтной энергии, например. 500 или 750 киловольт в 330 и 110 кВ или в обратном направлении.
Другие работают в составе малогабаритных устройств бытовой техники, электронных приборов, системах автоматизации. Они также широко используются в различных блоках питания мобильных устройств.
Трансформаторы работают только в цепях переменного напряжения разной частоты и не предназначены для применения в схемах постоянного тока, в которых используются преобразователи других типов.
Трансформаторы делятся на две основные группы: однофазные, питающиеся от сети однофазного переменного тока, и трехфазные, питающиеся от сети трехфазного переменного тока.
Трансформаторы очень различны по своей конструкции. Основными элементами трансформатора являются: замкнутый стальной сердечник (магнитопровод), обмотки и детали, служащие для крепления магнитопровода и катушек с обмотками и установки трансформатора в выпрямительное устройство. Матнитопровод предназначен для создания замкнутого пути для магнитного потока.
Части магннтопровода, на которых размещены обмотки, называются стержнями, а части, на которых отсутствуют обмотки и которые служат для замыкания: магнитного потока в магнитопроводе — ярмом. Материалом для магнитопровода трансформатора служит листовая электротехническая сталь (трансформаторная сталь). Эта сталь бывает различных марок, толщины, горячей и холодной прокатки.
Общие принципы работы трансформаторов
Мы знаем, что электромагнитная энергия неразрывна. Но ее принято представлять двумя составляющими:
Так проще понимать происходящие явления, описывать процессы, делать расчеты, конструировать различные устройства и схемы. Целые разделы электротехники посвящены раздельным анализам работы электрических и магнитных цепей.
Электрический ток, как и магнитный поток, протекает только по замкнутой цепи, обладающей сопротивлением (электрическим или магнитным). Его создают внешние приложенные силы — источники напряжения соответствующих энергий.
Однако, при рассмотрении принципов работы трансформаторных устройств придётся одновременно исследовать оба этих фактора, учесть их комплексное воздействие на преобразование мощности.
Если мы на замкнутый железный сердечник намотаем не одну, а две катушки, то при подключении одной из них, которую мы при этом назовем первичной, к зажимам переменного тока, в другой, которую мы назовем вторичной, будет индуктироваться переменная э. д. с. того же числа периодов, какое имеет ток в первичной катушке. От вторичной катушки мы можем взять переменный ток, как от обычного источника переменного тока — генератора. Такой прибор называется трансформатором, так как с помощью его можно изменить величину напряжения переменного тока, прежде чем приложить его к данной цепи. В практике обе катушки первичная и вторичная, находятся на одной и той же стороне сердечника, одна вокруг другой.
Простейший трансформатор состоит из двух обмоток, выполненных намоткой витками изолированной проволоки, по которым протекает электрический ток и одной магистрали для магнитного потока. Ее принято называть сердечником или магнитопроводом.
К вводу одной обмотки приложено напряжение от источника электроэнергии U1, а с выводов второй оно, после преобразования в U2, подается на подключенную нагрузку R.
Под действием напряжения U1 в первой обмотке по замкнутой цепи протекает ток I1, величина которого зависит от полного сопротивления Z, состоящего из двух составляющих:
1. активного сопротивления проводов обмотки;
2. реактивной составляющей, обладающей индуктивным характером.
Величина индуктивного сопротивления оказывает большое влияние на работу трансформатора.
Протекающая по первичной обмотки электрическая энергия в виде тока I1 представляет собой часть электромагнитной, магнитное поле которой направлено перпендикулярно движению зарядов или расположению витков проволоки. В его плоскости размещен сердечник трансформатора — магнитопровод, по которому замыкается магнитный поток Ф.
Все это наглядно отражено на картинке и строго соблюдается при изготовлении. Сам магнитопровод тоже замкнут, хотя в отдельных целях, например, для снижения магнитного потока в нем могут делать зазоры, увеличивающие его магнитное сопротивление.
За счет протекания первичного тока по обмотке магнитная составляющая электромагнитного поля проникает в магнитопровод и циркулирует по нему, пересекая витки вторичной обмотки, которая замкнута на выходное сопротивление R.
Под действием магнитного потока во вторичной обмотке наводится электрический ток I2. На его величине сказывается значение приложенной напряженности магнитной составляющей и полной сопротивление цепи, включая подключенную нагрузку R.
При работе трансформатора внутри магнитопровода создается общий магнитный поток Ф и его составные части Ф1 и Ф2.
Как устроен и работает автотрансформатор
Среди трансформаторных устройств особой популярностью пользуются упрощенные конструкции, использующие в работе не две разные отдельно выполненные обмотки, а одну общую, разделенную на секции. Их называют автотрансформаторами.
Принцип работы такой схемы практически остался прежним: происходит преобразование входной электромагнитной энергии в выходную. По виткам обмотки W1 протекают первичные токи I1, а по W2 — вторичные I2. Магнитопровод обеспечивает путь движения для магнитного потока Ф.
У автотрансформатора имеется гальванически связь между входными и выходными цепями. Так как преобразованию подвергается не вся приложенная мощность источника, а только часть ее, то создается более высокий КПД, чем у обычного трансформатора.
Такие конструкции позволяют экономить на материалах: стали для магнитопровода, меди для обмоток. Они обладают меньшим весом и стоимостью. Поэтому их эффективно используют в системе энергетики от 110 кВ и выше.
Особых отличий в режимах работы трансформатора и автотрансформатора практически нет.
Рабочие режимы трансформатора
При эксплуатации любой трансформатор может находиться в одном из состояний:
Холостой ход трансформатора
Холостой ход — работа прибора, машины и т. п. без нагрузки, вхолостую. При холостом ходе приборы, машины не отдают мощности, но сами при этом обычно потребляют ту или иную мощность.
Например, трансформатор, работающий без нагрузки (с разомкнутой вторичной обмоткой), потребляет некоторый ток из сети (т. н. холостой ток трансформатора), и этот ток, текущий в первичной обмотке, связан с потреблением некоторой мощности из сети, которая идет на нагрев обмотки (а в случае наличия потерь в стали и на нагрев сердечника) трансформатора.
Режим вывода из работы
Для его создания достаточно снять питающее напряжение источника электроэнергии с первичной обмотки и этим исключить прохождение электрического тока по ней, что и делают всегда в обязательном порядке с подобными устройствами.
Однако на практике при работе со сложными трансформаторными конструкциями такая мера не обеспечивает полностью меры безопасности: на обмотках может оставаться напряжение и приносить вред оборудованию, подвергать опасности обслуживающий персонал за счет случайного воздействия разрядов тока.
Как это может произойти?
У малогабаритных трансформаторов, которые работают в качестве блока питания, как показано на верхней фотографии, постороннее напряжение никакого вреда не причинит. Ему там просто неоткуда взяться. А на энергетическом оборудовании его обязательно следует учитывать. Разберём две часто встречающиеся причины:
1. подключение постороннего источника электроэнергии;
2. действие наведенного напряжения.
Первый вариант
На сложных трансформаторах работает не одна, а несколько обмоток, которые используются в разных цепях. Со всех их необходимо отключать напряжение.
Кроме того, на подстанциях, эксплуатируемой в автоматическом режиме без постоянного оперативного персонала к шинам силовых трансформаторов подключают дополнительные трансформаторы, обеспечивающие собственные нужды подстанции электроэнергией 0,4 кВ. Они предназначены для питания защит, устройств автоматики, освещения, отопления и других целей.
Их так и называют — ТСН или трансформаторы собственных нужд. Если со входа силового трансформатора снято напряжение и его вторичные цепи разомкнуты, а на ТСН проводятся работы, то существует вероятность обратной трансформации, когда напряжение 220 вольт с низкой стороны проникнет на высокую по подключенным шинам питания. Поэтому их необходимо обязательно отключать.
Действие наведенного напряжения
Если около шин отключенного трансформатора проходит высоковольтная линия, находящаяся под напряжением, то токи, протекающие по ней, способны наводить напряжение на шинах. Необходимо применять меры для его снятия.
Номинальный режим работы
Это обычное состояние трансформатора во время его эксплуатации для которого он и создан. Токи в обмотках и приложенные к ним напряжения соответствуют расчетным значениям.
Трансформатор в режиме номинальной нагрузки потребляет и преобразует мощности, соответствующие проектным значениям в течение всего предусмотренного ему ресурса.
Режим холостого хода
Он создается в том случае, когда на трансформатор подано напряжение от источника питания, а на выводах выходной обмотки отключена нагрузка, то есть разомкнута цепь. Этим исключается протекание тока по вторичной обмотке.
Трансформатор в режиме холостого хода потребляет минимально возможную мощность, определяемую его конструкторскими особенностями.
Режим короткого замыкания
Так называют ситуацию, когда нагрузка, подключенная к трансформатору оказывается закороченной, наглухо зашунтированной цепочками с очень малыми электрическими сопротивлениями и на нее действует вся мощность питания источника напряжения.
В этом режиме протекание огромных токов КЗ ничем практически не ограничивается. Они обладают огромной тепловой энергией и способны сжечь провода или оборудование. Причем действуют до тех пор, пока схема питания через вторичную или первичную обмотку не выгорит, разорвавшись в наиболее слабом месте.
Это самый опасный режим, который способен возникнуть при работе трансформатора, причем, в любой, самый неожиданный момент времени. Его появление можно предвидеть, а развитие следует ограничивать. С этой целью используют защиты, которые отслеживают превышение допустимых токов на нагрузке и максимально быстро их отключают.
Режим перенапряжения
Обмотки трансформатора покрыты слоем изоляции, который создается для работы под определенным напряжением. При эксплуатации возможно его превышение по различным причинам, возникающим как внутри электрической системы, так и в результате воздействия атмосферных явлений.
В заводских условиях определяется величина допустимого превышения напряжения, которое может действовать на изоляцию до нескольких часов и кратковременных перенапряжений, создаваемых переходными процессами при коммутациях оборудования.
Для предотвращения их воздействия создают защиты от повышения напряжения, которые при возникновении аварийной ситуации отключают питание со схемы в автоматическом режиме или ограничивают импульсы разрядов.
Устройство и принцип работы трансформаторов
Как работает трансформатор
Трансформатор работает за счет взаимоиндукции. Для начала разберем, что такое индукция.
Что такое индукция
Если по проводу пустить электрический ток, то возникнет магнитное поле.
Магнитное поле — неотъемлемая часть электрического. И в магнитном поле сохраняется энергия электрического.
У постоянных магнитов наличие магнитного поля объясняется направлением «доменов в одну сторону». Т.е. у каждого отдельно взятого атома есть свое маленькое магнитное поле. У постоянных магнитов эти маленькие магнитные поля направлены в одну сторону. Поэтому у постоянного магнита такое сильное магнитное поле.
И другие материалы можно намагнитить, т.е. сделать так, чтобы магнитные поля были направлены в одну сторону. Так получится «искусственно созданный» магнит.
Кстати, среди ремонтников очень популярен магнит, который намагничивает и размагничивает отвертки. Таким отвертками удобно пользоваться, поскольку маленькие болтики и винтики останутся на отвертке и не упадут в случае неосторожного движения.
А индуктивность — это способность материала накапливать магнитное поле, когда по этому материалу течет электрический ток.
Чем больше материал может создать магнитное поле, тем выше его индуктивность.
Магнитное поле можно увеличить, если сделать катушку.
Достаточно взять проволоку, намотать ее на каркас. И магнитные поля витков будут складываться.
Это и есть катушка индуктивности.
Провод в катушке индуктивности должен быть изолирован. Потому, что если хотя бы один виток будет в коротком замыкании с другим, то магнитное поле будет неравномерным. Будет межвитковое замыкание, из-за которого магнитное поле потеряет свою равномерность.
Если мы подаем на катушку постоянный ток, то и магнитное поле будет постоянным. Оно не будет меняться. А что если отключить катушку от источника? Тогда наступит явление самоиндукции. Так как ток уменьшается, то магнитное поле больше нечем поддерживать. И вся так энергия, которая была в магнитном поле, переходит в электрическую.
Изменение магнитного поля создает электрическое поле.
Увеличение индуктивности сердечником
А как увеличить индуктивность? Только с помощью количества витков и диаметром провода? На индуктивность еще влияет окружающая среда. Воздух — не самый лучший материал для накопления или передачи магнитного поля. У него низкая магнитная проницаемость. Тем более, при изменении плотности и температуры воздуха, это значение меняется. Поэтому, для увеличения индуктивности используют ферромагнетики. К ним относят железо, никель, кобальт и др.
Если сделать сердечник в центре катушки из таких материалов, то можно многократно повысить индуктивность катушки.
Из ферромагнетиков делают сердечники (магнитопроводы). В основном используют электротехническую сталь, которую специально делают для этих целей.
Кстати, теперь намного проще регулировать индуктивность с сердечником. Достаточно плавно передвигать сердечник внутри катушки, и индуктивность будет плавно меняться. Это удобнее, чем двигать витки друг от друга.
Взаимоиндукция и принцип передачи тока
Раз можно накопить энергию в катушке за счет магнитного поля, то можно передать эту энергию в другую катушку.
Допустим, есть две одинаковые катушки индуктивности. Одна подключена к питанию, другая нет.
При подключении питания, у первой катушки возникнет магнитное поле. И если приблизить вторую катушку к первой, у второй катушки индуцируется ЭДС за счет магнитного поля первой.
Но ЭДС второй катушки будет не долгим явлением. Если на первую катушку подается постоянное напряжение, то и магнитное поле будет постоянным.
А электрический ток возникает только при переменном магнитное поле. Поэтому, ток во второй катушке сразу исчезнет, как только стабилизируется магнитное поле.
Если поменяем полярность на первой катушке, то и изменится ее магнитное поле. А это значит, что оно будет изменяться и во второй катушке. Это снова индуцирует ток во второй катушке, но не надолго.
Чтобы непрерывно можно было передать ток от первой катушки ко второй, нужен переменный источник тока. Переменный ток создает переменное магнитное поле. А переменное магнитное поле проницая проводник создает в нем переменный наведенный ток.
И поэтому, если на первую катушку будет подано переменное напряжение, то возникнет и переменное магнитное поле. Это магнитное поле индуцирует во второй катушке электромагнитное поле, и ток будет во второй катушке.
Такое явление называют взаимоиндукцией. Когда за счет индуктивности ток из одной части цепи можно передать в другую используя электромагнитное поле.
Многие путают электромагнитную индукцию и взаимоиндукцию. Но это разные явления, хоть и принцип действия во многом схож.
Кроме переменного тока можно использовать и импульсный ток, в котором плюс и минус не меняются местами. Главное выполнять правило — ток должен менять свое значение. И тогда будет переменное магнитное поле.
Кстати, когда работают блоки питания и светильники, издаваемый гул от них — это звук от катушек или их сердечников. Это из-за индукции. Магнитное поле из-за разного направления в катушках частично сдвигает витки и сердечники, отсюда и появляется тот самый звон. Это касается и электродвигателей. Поэтому такие детали заливают смолой или компаундом, чтобы уменьшить издаваемый звук.
Устройство трансформатора
А если катушки будут разными? Тогда можно преобразовать напряжение из одной величины в другую. Так и работает трансформатор. Трансформатор преобразует напряжение с первичной обмотки в напряжение другой величины на вторичной обмотке.
Трансформатор работает только с переменным, импульсным или любым другим током, у которого изменяется значение со временем.
Трансформатор преобразует ток и напряжение, но он не позволяет увеличить мощность. Даже наоборот, из-за нагрева он немного забирает мощность. И не смотря на это, его КПД может доходить вплоть до 99%.
Классический трансформатор
Разберем устройство классического трансформатора.
Основная его функция — это снижение или повышение напряжения для блока питания. Работает за счет сетевого напряжения и низкой частоты (от 50 Гц). Частота переменного тока важна для расчетов.
Классический трансформатор состоит из первичной и вторичной обмотки, а также сердечника (магнитопровода).
На первичную обмотку подается то напряжение, которое нужно преобразовать. А со вторичной обмотки снимают то напряжение, которое получилось за счет взаимоиндукции. Сердечник увеличивает магнитный поток.
Как же происходит преобразование? Все просто. Можно рассчитать индуктивность первичной и вторичной обмотки. Если нужно низкое напряжение, то вторичная обмотка имеет меньше витков, чем первичная. Раз первичная работает за счет сетевого напряжения, то и рассчитывается на 220 В с небольшим запасом из-за колебаний сети.
Напряжение на вторичной обмотке сдвинуто по фазе относительно первичной. Это связано с явлением взаимоиндукции. На графике показана примерная разница по синусоиде.
Трансформаторы могут быть источниками фазовых искажений. Они изменяют сигналы по фазе из-за индуктивности, как показано на графике выше.
На принципиальных схемах классический трансформатор обозначается двумя катушками с сердечником.
Соответственно, если у трансформатора несколько вторичных обмоток, то и количество катушек на схеме будет другим.
Количество обмоток на трансформаторе может быть любым. Могут быть и несколько первичных и вторичных обмоток. А еще есть трансформаторы с общей точкой для двуполярного питания.
Кстати, если вы думаете, что у трансформатора нет сторон, как у диодов или транзисторов, то вы ошибаетесь. У трансформатора тоже есть начало обмотки и конец обмотки. На принципиальных схемах обозначение начала обмотки обозначается точкой и цифрами.
Зачем это надо? Дело в том, что магнитная индукция имеет свое направление, и на этом заложен весь принцип работы схемы. Если подключить обмотку не так, как показано на схеме, то вся схема перестанет работать как изначально задумывалось. Еще как пример можно привести трёхфазные электродвигатели. У них и вовсе для правильной работы важно знать начало и конец обмотки.
Коэффициент трансформации
У трансформаторов есть такое понятие, как коэффициент трансформации. Это отношение его входных и выходных характеристик (отношение количества витков первичной обмотки к вторичной).
Например, если трансформатор понижающий, с 220 В до 12 В, то его коэффициент больше единицы, то есть К 1. У разделительного коэффициент равен 1.
От чего зависит мощность трансформатора
При расчете учитываются следующие параметры:
И все эти значения меняются в зависимости от расчетной мощности и требуемых параметров.
Типы классических трансформаторов
Классические трансформаторы по типу магнитопровода и расположению катушек разделяются на три основных вида:
Броневые чаще всего состоят из Е-пластин (или Ш, как многие называют), которые изолируются друг от друга лаком. В этом типе катушки заключены внутри сердечника как под броней. Поэтому они так и называются.
А еще сердечник может быть ленточным, но расположение катушек от этого не меняется.
Однако в плане эффективности преобразования мощности — это не самый лучший вариант. Магнитный поток получается неравномерным. Да и броневой трансформатор более уязвим к наводкам и помехам извне. Но зато у такого типа есть неоспоримое преимущество. Катушка наматывается достаточно просто, а сборка магнитопровода не составляет особого труда.
Такие трансформаторы чаще всего применяются в мелкогабаритной бытовой технике. Например, их можно часто встретить в мощных звуковых колонках от компьютеров.
Стержневые отличаются особенностями расположения катушек и конструкцией магнитопровода. Такой тип трансформаторов еще называют П-образным. Это связано с тем, что конструктивно сердечник такого трансформатора ленточный, и он собирается из узкой ленты электротехнической стали. И чтобы установить катушки в сердечник, его делают из двух форм в виде буквы П.
После установки двух катушек на первую часть сердечника, вторая часть замыкает ее при окончательной сборке.
Этот тип противоположность броневому. У такого трансформатора обмотки находятся снаружи, а у броневого наоборот, внутри.
Тороидальные трансформаторы являются самыми эффективными, и в тоже время самыми сложными в изготовлении. Сложности изготовления заключаются в том, что сердечник имеет форму тора. Он замкнут, и поместить катушки в сердечник так просто как в стержневых и броневых не получится.
Можно и разъединить трансформаторное железо на две полукруглые части (как П-образный трансформатор), но обмотку не получится намотать. Она будет не такая плотная и ровная.
Поэтому наматывают витки сразу на сердечник. А это намного дольше, да и автоматизировать такой процесс сложнее. Соответственно, и цена на такой трансформатор будет выше.
Режимы работы трансформаторов
Есть три основных режима:
1. Режим холостого хода. Первичная обмотка подключена к сети, но вторичная обмотка не подключена к нагрузке.
2. Режим нагрузки. Это рабочий режим. Первичная обмотка преобразует сетевое напряжение, а вторичная принимает его и подает в нагрузку.
3. Режим короткого замыкания. Вторичная обмотка находится в коротком замыкании. Это аварийный режим для большинства трансформаторов. В этой ситуации он может быстро нагреться и выйти из строя.
Все режимы и их критические параметры также зависят и от типа трансформатора. Например, для трансформатора тока, холостой режим является аварийным.
Импульсные трансформаторы
У импульсных трансформаторов другой тип действия. Они преобразуют напряжение до высоких частот с помощью схемы управления. Конечно из-за этого усложняется схема работы, но это позволяет накапливать большое количество энергии в катушках. Большое преимущество перед классическим трансформаторов — это компактность. Если классический трансформатор на 100 Вт будет большим, то импульсный в десятки раз меньше.
Из недостатков импульсных блоков питания — это наличие импульсных помех. Но и эти помехи удается сглаживать. Поэтому, все блоки питания в компьютерах, ноутбуках и зарядных устройствах чаще всего сделаны на импульсных трансформаторах.
Еще импульсные трансформаторы питают лампы подсветки в мониторах, которые подсвечивают матрицу. Это касается TFT мониторов.
Отличия импульсных трансформаторов от классических
Тезисно можно выделить несколько различий:
А еще, как правило, у импульсных трансформаторов больше обмоток, чем у классических.
Почему сердечник не делают сплошным
Сердечники (магнитопроводы) делают из железных пластин потому, что во время работы появляются токи Фуко. Их называют еще вихревыми токами. Эти токи появляются от наводок обмоток в сердечнике. В итоге сердечник может перегреться, и даже расплавить катушки.
Поэтому, для трансформаторов низкой частоты делают сердечники из изолированных друг от друга пластин.
Пластины могут быть покрыты лаком, или изолированы бумагой между собой. Это уменьшает короткие замыкания в пластинах.
А можно ли сделать сердечник сплошным? Да, так можно сделать. И у импульсных трансформаторов сердечники сделаны из ферромагнитного порошка, у которого частицы друг от друга изолированы. Он называется ферродиэлектрическим сердечником. Но это возможно только на высоких частотах, на которых работает импульсный трансформатор.
Что делает трансформатор
У трансформатора много полезных и важных функций:
Это название неспроста, так как такой трансформатор выполняет функцию строчной развертки. По сути кинескоп — это и есть электронно-лучевая трубка. Поэтому, для работы телевизоров, где используется кинескоп, нужен строчный трансформатор.
Например, выход усилителя 2 кОм, а трансформатор согласует сопротивление и понижает напряжение для щадящей работы динамиков. А на его вторичной обмотке сопротивление всего несколько десятков Ом.
Поэтому, потребитель будет защищен от опасных высоких токов. Именно из-за этого бестрансформаторные блоки питания считаются опасными.
Вопросы об устройстве трансформатора
-Почему зазор между катушками делается минимальным?
Это делается для лучшего контакта магнитных полей. Если зазор будет большим — то и эффективность трансформатора будет низкая.
-А можно ли сделать трансформатор без сердечника аналогичный мощности с сердечником?
Да, но тогда придется увеличивать количество витков, чтобы увеличить магнитный поток. Например, с сердечником у обмоток витки могут быть по несколько тысяч. А без сердечника придется увеличивать магнитный поток за счет витков. И количество витков будет по несколько десяток тысяч. Это не только увеличивает размеры катушек, но и снижает их эффективность и увеличивает шансы перегрева.
-Можно ли подключить понижающий трансформатор как повышающий?
Если у вас есть трансформатор, который понижает сетевое напряжение с 220 В в 12 В, то его можно подключить как повышающий. То есть, вы можете подать на него переменное напряжение 12 В на вторичную обмотку и получить повышенное на первичной 220 В.
-А что будет, если на вторичную обмотку понижающего трансфоратора подать сетевое напряжение?
Тогда обмотка сгорит. Её сопротивление, количество витков и сечение провода не рассчитаны на такие напряжения.
-Можно ли сделать трансформатор самостоятельно своими руками в домашних условия?
Да, это вполне реально. И многие радиолюбители и электронщики этим занимаются. А некоторые еще и зарабатывают. продавая готовую продукцию. Но стоит помнить о том, что это долгий, сложный и не простой труд. Нужны качественные материалы. Это трансформаторное железо, эмалированные медные провода различного сечения, изоляционные материалы.
Все материалы должны быть высокого качества. Если медный провод будет с плохой изоляцией, то возможно межвитковое замыкание, которое неминуемо приведет к перегреву. А для начала нужно рассчитать все параметры будущего трансформатора. Это можно сделать с помощью различных программ, которые доступны в сети.
Далее, это долгие часы сборки. Особенно если вы решили намотать тороидальные трансформатор.
Нужно плотно и равномерно наматывать витки, записывать каждый десяток, чтобы не запутаться и не изменить характеристики будущего преобразователя или блока питания.
-Что будет, если включить трансформатор без сердечника?
Так как трансформатор рассчитывался изначально с сердечником, то и преобразовать полностью напряжение он не сможет. То есть, на вторичке что-то будет, но явно не те параметры. Да и если подключите нагрузку к обмоткам без сердечника, они быстро нагреются и сгорят.
Неисправности трансформаторов
К основным неисправностям трансформаторов можно отнести:
Как проверить на целостность
Трансформатор можно проверить обычным мультиметром. Установите прибор в режим измерения сопротивления и проверьте обмотки.
Они не должны быть в обрыве, никогда. Если нигде обрывов нет, то можно найти первичную и вторичную обмотки при помощи измерения сопротивления. У первичной обмотки понижающего трансформатора сопротивление будет выше, чем у вторичной. Это все из-за количества витков. Чем больше витков и чем меньше диаметр провода — тем больше сопротивление обмотки.
Безопасная проверка работы трансформатора
Если вы решили намотать свой трансформатор или проверить старый, то обязательно подключайте лампочку в разрыв цепи (последовательно!). Если что-то не так произойдет то, лампочка загорится и заберет ток на себя и сможет спасти неисправный трансформатор.
Трансформаторы много где используются. Их конструкция разная и для каждой задачи она по-своему уникальна.
Интересные факты про трансформаторы
Трансформатор — это самый эффективный преобразователь. Его КПД (коэффициент полезного действия) может доходить до 99% (силовые трансформаторы). А вот у ДВС (двигатель внутреннего сгорания), КПД обычно не выше 30%.
Самый эффективный, но в тоже время и самый сложный в изготовлении — это тороидальный трансформатор. Он эффективен благодаря расположению катушек и магнитопроводу. Это усложняет процесс изготовления, особенно в промышленных масштабах.