Слияние поверхности сосудистых сплетений что это
Слияние поверхности сосудистых сплетений что это
Из множества аспектов исследования механизмов, обеспечивающих оптимальное функционирование центральной нервной системы, достаточно большой период времени активно изучаются структурно-функциональные возможности гематоэнцефалического барьера (ГЭБ) [1, 2].
Именно наличие ГЭБ позволяет поддерживать гомеостаз всего организма, в том числе и центральной нервной системы [3, 4]. Наиболее функционально значимой структурой признаны plexus choroids головного мозга (ССГМ) [5, 6]. Очевидно, что важным является онтогенетическое становление морфологического субстрата ССГМ [7]. Несомненно, важна морфофункциональная состоятельность ССГМ не только в условиях нормы, но с учетом окружающей среды [8, 9]. Формирование любой структуры организма хордовых, включая и млекопитающих, обусловлено также окружающей средой, в частности воздействием стресса [10].
Однако, несмотря на большое внимание исследователей к особенностям функционирования центральной нервной системы, частные вопросы структуры и функций plexus choroids оставляют достаточно много вопросов по формированию барьера, в частности, в онто- и филогенезе. Требуют детализации преобразования структурных компонентов plexus choroids в историческом аспекте. Отсутствует исследование рандомизации морфофункционального состояния plexus choroids боковых, 3-его и 4-го желудочков ликворной системы головного мозга. Совершенно очевидно, что это позволит раскрыть механизмы защиты от проникновения агрессивных препаратов, способных влиять на гомеостаз в центральной нервной системе.
Было проведено сравнительное изучение структурно-функционального становления plexus choroids головного мозга позвоночных животных боковых, 3-го и 4-го желудочков и выявление особенностей функционального созревания каждого.
В работе использованы методы: микроанатомические (Тотальный пленочный препарат сосудистых сплетений головного мозга мышей по Л.Г. Сентюровой и Р.А. Зумерову, авторское свидетельство № 1288536), гематоксилин и эозин, Ван–Гизон, Харт; толуидиновый синий, по Нахласу, по Гомори и Гленнеру; метод импрегнации по В.В. Куприянову. Проводилось определение высоты клеток хориоидного эпителия (в мкм), средний диаметр их ядер (в мкм), толщина соединительнотканной стромы (в мкм), средний диаметр отдельных звеньев микроциркуляторного русла (в мкм). Статистическую обработку полученных данных осуществляли на персональном компьютере с использованием пакета «Анализ данных» в рамках программы Microsoft Excelи BioStat 2008Professional 5.8.4.
Материалом для исследования служили ССГМ миноги (3), карповых (3) и осетровых рыб (3), земноводных (3), птиц (3) и беспородных белых крыс (25), мышей (25). Всего было детально изучены ССГМ 65 особей. При работе использовали устройство для фиксации мелких лабораторных животных в эксперименте [11].
Результаты исследования и их обсуждение
Обнаружено, что у миноги в переднем мозге plexus choroids представлены эпителиальной пластинкой. Отмечается расположение эпителия в несколько слоев. Кровеносные сосуды тесно соприкасаются с этим эпителием, что позволяет обеспечивать максимальный функциональный контакт. Сосуды заполнены элементами крови.
У карповых ССГМ кроме сплетения в желудочке продолговатого мозга, они располагаются и в промежуточном мозге. У сазана, каспийской воблы, толстолобика, plexus choroids заметно развиты лишь в 3-м и 4-м желудочках. Дупликатура видоизмененной эпендимы с одной стороны образована цилиндрическими клетками, с другой – плоской формы. Первые характеризует практически не окрашивающаяся цитоплазма и апикальное расположение ядра. Эти же взаимоотношения структур наблюдались и у взрослых особей. Вероятно, это сформировано под влиянием среды обитания и особенностями функционирования эпителиальных клеток ССГМ. А у осетра plexus choroids переднего мозга представлено дупликатурой видоизмененной эпендимы медиальной стенки желудочка. Эпителиоциты (хориоэпителиоциты) довольно однородной плоской формой. Сосуды встречаются редко. Соединительнотканная ткань не определяется. Plexus choroids 3-го и 4-го желудочков мозга были образованы сосудистыми клубочками с тонкой эндотелиальной выстилкой, обеспечивающей оптимальные условия для местного метаболизма. В то же время у севрюги мы не обнаружили plexus choroids в конечном мозге.
Достаточно позднее формирование элементов ГЭБ в классе рыб, возможно, определяется их функциональным значением. Об этом свидетельствует и тот факт, что форма их мало меняется, а только биометрические показатели.
У взрослых амфибий plexus choroids являются структурно оформленными образованиями. Эпителий, обращенный в полость желудочка, образован однослойными клетками кубической формы. Каждый эпителиоцит содержит по одному ядру, чаще округлой формы. В ядре прослеживается нежная сеточка гетерохроматина. Цитоплазма слегка базофильна. Толщина соединительнотканной стромы существенно увеличена по сравнению с филогенетически более ранними формами. В сплетениях всех желудочков наблюдается стаз элементов крови. Это указывает на существенную функциональную особенность ССГМ в процессах метаболизма у земноводных. По-видимому, медленный кровоток способствует более качественному обмену жизненно необходимыми веществами.
Сравнение plexus choroids головного мозга рептилий с земноводными позволяет утверждать, что они присутствуют также в боковых, 3-м и 4-м желудочках. Наибольшую площадь занимают сплетения в боковых и в 4-м желудочках. Строение аналогично таковому у амфибий. Хорошо выражена гроздевидная часть. Эпителиоциты преимущественно кубической формы располагается в один слой на базальной мембране. Следует отметить, что высота эпителиоцитов сравнима с аналогичными клетками амфибий. Каждая клетка содержит по одному ядру округлой формы и содержит довольно много гетерохроматина. Под базальной мембраной располагается рыхлая соединительная ткань. В её толще залегают довольно многочисленные кровеносные сосуды. Присутствуют фибробласты, наблюдаются единичные пигментоциты. Меньше всего соединительной ткани в сосудистом сплетении третьего желудочка.
Впервые у птиц закладку plexus choroids сосудистых сплетений головного мозга можно наблюдать на 2-й день пренатального развития. Первыми образуются сплетения 4-го желудочка в виде складки эпендимы с зародышевой мезенхимой. Только к концу первой недели начинается гистогенез plexus choroids боковых желудочков. Однако, эпителий псевдомногорядный. Ближе к вылуплению он становится однорядным однослойным. Как и у более ранних эволюционных форм каждый эпителиоцит (хориоэпителиоцит) имеет ядро чаще овальной формы. Можно наблюдать ядрышко и небольшое количество гетерохроматина. Цитоплазма оксифильна. Лишь к середине второй недели нами наблюдались plexus choroids 3-го желудочка. После вылупления в plexus choroids регистрировалось продолжение морфофункциональной дифференцировки, при сохранении заметной гетерохронии созревания ССГМ боковых, 3-го и 4-го желудочков.
В классе млекопитающих (крысы, мыши) сначала формируются ССГМ 4-го желудочка. В начале 3-й недели (15–17 день пренатального развития) появляются закладки ССГМ в боковых желудочках и 3-го желудочка. Далее гистогенез сосудистых сплетений продолжается уже в постнатальном периоде, когда в 3-м и 4-м желудочках появляются ворсинки, увеличивающие поверхность для оптимального обмена веществ. На пленочных препаратах показано, что формирование сосудистого русла продолжается вплоть до полного созревания организма. Сравнительный анализ структуры ССГМ желудочков позволяет сделать вывод, что наибольшую функциональную нагрузку несут ССГМ третьего и четвертого желудочков.
ССГМ у человека имеют значительно большие размеры и сложность строения. В 3-м и 4-м желудочках plexus choroids образовано инвагинацией однослойной крыши. А plexus choroids боковых желудочков являются производными медиальной части матрикса. Раньше других наблюдается закладка сосудистого сплетения 4-го желудочка. Очень рано ССГМ начинают формировать вторичные ворсины. В 7 недель эмбрионального развития сплетения боковых желудочков имеют лишь короткие первичные ворсины. И только на 8-й неделе появляются первые ветвления. Строма построена из мезенхимы, содержащей различные клеточные элементы. В плодном периоде к 15 неделям plexus choroids заполняют большую часть полости боковых желудочков. В этот период ядра эпителиоцитов (хориоэпителиоцитов) располагаются ближе к апикальному полюсу, что говорит о высокой степени метаболических процессов, в частности секреторных. После 16 недель ядра эпителиоцитов занимают обычное положение (ближе к основанию клетки). Наличие гломуса в сосудистых сплетениях бокового и 4-го желудочков, оставляет необходимость дальнейшего изучения plexus choroids, для более полного представления о роли ССГМ в обеспечении гомеостаза центральной нервной системы.
Сравнительное исследование филогенеза и отдельных этапов индивидуального развития сосудистых сплетений головного мозга (plexus choroids) миноги, рыб, земноводных, птиц, млекопитающих и человека позволило выявить этапы их морфогенеза и структурно-функционального становления гематоэнцефалического барьера.
Так, у хордовых основными закономерностями морфогенеза сосудистых сплетений головного мозга можно считать следующее: первичные сосудистые сплетения миноги являются простейшими образованиями и построены из эпителия. Последний представлен несколькими слоями. Сосуды лишь прилежат к нему.
У рыб начинают формироваться однослойные эпителиальные тяжи, окаймляющие примитивную соединительную ткань. Эпителиоциты резко не равноценны по высоте.
У амфибий ССГМ присутствуют во всех желудочках: боковых, третьем и четвертом. У них формируются не только первичные, но и вторичные ворсины. При этом сохранен план строения: однослойный эпителий расположен на базальной мембране. Клетки кубической формы, иногда уплощенные. В первых ядра округлые, во вторых – овальные. Все они содержат по 1–2 ядрышка. В соединительной ткани множественные сосуды микроциркуляторного русла. Наблюдаются единичные фибробласты.
У рептилий наибольшую функциональную нагрузку несут сосудистые сплетения боковых и четвертого желудочков. Именно они наиболее мощно представлены структурно. В этом классе хордовых эпителий представлен аналогично по сравнению с более низшими эволюционными формами. Но соединительнотканная прослойка содержит большее количество клеточных элементов, среди которых фибробласты, единичные фиброциты и пигментоциты.
У птиц закладка сосудистого сплетения формируется в боковых желудочках в виде многослойного эпителия с дальнейшей реорганизацией в однослойный. Порядок сходен с таковым у млекопитающих. Также наблюдается схожее строение в силу множественного ветвления ворсин в боковых желудочках головного мозга как у человека. Эпителий сосудистых сплетений однослойный кубический. Расположен на базальной мембране. Соединительнотканная прослойка представлена рыхлой соединительной тканью с сосудами микроциркуляторного русла и клеточными элементами.
Анализируя полученные морфометрические данные на примере ССГМ млекопитающих – мышей (рис. 1), можно отметить, что высота эпителиоцитов plexus choroids (хориоэпителиоцитов) 4-го желудочка во все сроки развития по размерам превышает размеры эпителиоцитов в боковом и 3-м желудочке (p 0,05).
Рис. 1. Морфометрия сосудистых сплетений головного мозга мышей в онтогенезе (эпителий)
Рис. 2. Морфометрия сосудистых сплетений головного мозга мышей в онтогенезе (ядра)
У новорожденных мышей только в четвертом желудочке наблюдается увеличение высоты эпителия (p 0,05), хотя эпителий имеет тенденцию к снижению высоты (p 0,05).
Заключение
Исследование plexus choroids головного мозга позвоночных в сравнительном аспекте позволило установить ряд закономерностей, свидетельствующих об особенностях становления морфофункционального субстрата гематоэнцефалического барьера. Процессы дифференцировки наблюдаются во всех основных морфологических структурах, в частности в хориоэпителиоцитах.
Опухоль сосудистого сплетения
К разновидностям опухолей сосудистого сплетения относятся: атипичная папиллома сосудистого сплетения, карцинома сосудистого сплетения, папиллома сосудистого сплетения
Что такое опухоль сосудистого сплетения?
Опухоли сосудистого сплетения составляют 3% от опухолей головного мозга у детей, но это 10–20% от опухолей головного мозга у детей в возрасте до 1 года. В США ежегодно диагностируется приблизительно 75–80 новых случаев ОСС у детей и молодых людей до 21 года.
Существует 2 основных вида опухолей сосудистого сплетения.
Основный метод лечения опухолей сосудистого сплетения — хирургическая операция. В зависимости от вида опухоли и степени развития заболевания помимо хирургической операции могут использоваться дополнительные методы лечения, в том числе химиотерапия и лучевая терапия.
Лучевая терапия позволяет уменьшить размеры опухоли и уничтожить злокачественные клетки с помощью ионизирующего излучения, рентгеновских лучей или протонов. Излучение повреждает ДНК внутри опухолевых клеток.
Признаки и симптомы опухолей сосудистого сплетения
Симптомы ОСС сильно различаются в зависимости от возраста ребенка и расположения опухоли. По мере роста опухоли нарушается нормальная циркуляция спинномозговой жидкости. Это вызывает накопление жидкости в головном мозге, известное как гидроцефалия. Жидкость вызывает расширение желудочков и повышает давление на головной мозг (внутричерепное давление). Многие из симптомов опухолей сосудистого сплетения связаны с повышенным давлением на ткани головного мозга.
Возможные симптомы опухоли сосудистого сплетения:
Диагностика опухоли сосудистого сплетения
Врачи проверяют наличие опухолей сосудистого сплетения несколькими способами. Используют такие исследования:
Определение степени злокачественности и стадии развития опухоли
В зависимости от гистологии и вида опухоли, ее относят к доброкачественным или злокачественным. ОСС диагностируются как папиллома сосудистого сплетения (ПСС), нераковая, или карцинома сосудистого сплетения (КСС), раковая.
Опухоли классифицируются по их внешнему виду под микроскопом. Чем сильнее изменения внешнего вида клеток, тем выше степень злокачественности. Папилломы сосудистого сплетения обычно представляют собой опухоли I степени злокачественности и в большинстве случаев доброкачественные. Карциномы сосудистого сплетения обычно представляют собой опухоли III степени злокачественности. Они более агрессивны по своей природе и отличаются очень быстрым ростом.
Для определения стадии развития опухоли требуется МРТ позвоночника и головного мозга, чтобы увидеть, насколько болезнь распространилась, и люмбальная пункция для поиска раковых клеток в спинномозговой жидкости.
Прогноз при лечении опухолей сосудистого сплетения
Вероятность излечения очень высокая, если возможно полное удаление опухоли хирургическим путем. При успешном проведении хирургической операции на папилломе сосудистого сплетения (ПСС) выживаемость достигает 100%. Карцинома сосудистого сплетения (КСС) более агрессивна, но вероятность излечения составляет примерно 50–70%.
На прогноз влияют такие факторы:
Лечение опухолей сосудистого сплетения
Лечение зависит от нескольких факторов, в том числе от размера и расположения опухоли, возраста ребенка и типа опухоли (ПСС или КСС). Лечение обычно включает в себя хирургическую операцию, химиотерапию и лучевую терапию. Основным методом лечения, если это возможно, является хирургическое вмешательство. Карцинома сосудистого сплетения — более агрессивный вид рака, и для большинства пациентов применяется несколько методов лечения.
Хирургическая операция
Как для диагностики, так и для лечения опухолей сосудистого сплетения проводят хирургическую операцию. Ее целью является удаление максимального количества опухолевых клеток. В редких случаях хирургическое вмешательство невозможно из-за расположения опухоли.
Часто дети с папилломой сосудистого сплетения не нуждаются в дополнительном лечении, если опухоль полностью удалена. Детям с карциномой сосудистого сплетения в дополнение к хирургическому вмешательству обычно требуются химиотерапия и лучевая терапия.
В некоторых случаях в мозг устанавливают шунт для предотвращения накопления жидкости (гидроцефалии). Скапливающаяся жидкость вызывает повышение внутричерепного давления и может вызывать многие симптомы, связанные с опухолями сосудистого сплетения. Шунт представляет собой тонкую трубку для дренажа спинномозговой жидкости, т. е. для ее выведения из головного мозга, что позволяет облегчить симптомы. Шунт может быть временным или постоянным.
Шунт представляет собой тонкую трубку для дренажа спинномозговой жидкости, т. е. для ее выведения из головного мозга. Скопившаяся жидкость вызывает повышение давления внутри головного мозга и может вызывать другие симптомы опухолей сосудистого сплетения.
Химиотерапия
Лучевая терапия
В дополнение к другим методам лечения иногда применяется лучевая терапия. Вид лучевой терапии зависит от расположения и распространения опухоли. Возраст ребенка является важным фактором для принятия решения о необходимости лучевой терапии при лечении опухолей головного мозга в детском возрасте.
Клинические исследования
При рецидиве опухоли детям с частичным ответом на химиотерапию и лучевую терапию может быть предложено лечение в рамках клинического исследования. Хотя в настоящее время нет биологических агентов, целенаправленно действующих на раковые клетки КСС, пациенты могут принять участие в исследованиях иммунотерапии и исследованиях I фазы.
Поддерживающая терапия
Поддерживающая терапия для пациентов с опухолью сосудистого сплетения включает в себя необходимый курс реабилитации и консультации невролога. Может потребоваться применение стероидных и противосудорожных препаратов. Пациенту может быть необходима помощь в решении трудностей, связанных с обучением, развитием и процессом лечения.
Жизнь после опухоли сосудистого сплетения
Детям с долгосрочной выживаемостью после КСС необходимо тщательное и длительное наблюдение для выявления отдаленных последствий лечения. Детей с герминативной мутацией TP53 или синдромом Ли-Фраумени необходимо направить на генетическую консультацию и наблюдение за развитием других видов рака, связанных с этим синдромом.
—
Дата изменения: июнь 2018 г.
Люмбальная пункция
Люмбальная пункция иногда применяется для диагностики рака у детей. Ее проводят, чтобы определить наличие злокачественных клеток в спинномозговой жидкости.
Подробнее о люмбальной пункции
Наследственный риск и генетическое тестирование
Онкологическая предрасположенность означает, что для некоторых людей повышенный риск развития рака генетически обусловлен.
Подробнее об онкологической предрасположенности
Магнитно-резонансная томография (МРТ)
При магнитно-резонансной томографии (МРТ) используется большой магнит, радиоволны и компьютеры, позволяющие получать высококачественные детальные изображения внутренних структур тела.
Слияние поверхности сосудистых сплетений что это
а) Желудочки и сосудистое сплетение:
1. Основы эмбриологии. На ранних стадиях эмбрионального развития полость переднего мозга разделяется на два боковых желудочка, которые развиваются как выпячивания ростральной части третьего желудочка и связаны с ним межжелудочковым отверстием (отверстие Монро). В корональной плоскости вышеупомянутые структуры образуют общий Н-образный центральный «моножелудочек». Водопровод мозга развивается из среднего мозгового пузыря. Четвертый желудочек развивается из полости в ромбовидном мозге и каудально сливается с центральным каналом спинного мозга.
2. Обзор анатомии. Ликворные пространства головного мозга включают в себя желудочковую систему и субарахноидальные пространства (САП). Желудочковая система состоит из четырех взаимосвязанных полостей, выстланных эпендимой и заполненных спинномозговой жидкостью (СМЖ), которые залегают в глубоких отделах головного мозга. Парные боковые желудочки сообщаются с третьим желудочком через Y-образное отверстие Монро Третий желудочек сообщается с четвертым через (сильвиев) водопровод мозга. В свою очередь, четвертый желудочек связан с САП посредством выпускных отверстий (срединно расположенное отверстие Мажанди и два боковых отверстия Люшки).
Боковые желудочки. Каждый боковой желудочек имеет тело, преддверие и три «ветви» (рога). Крышей лобного рога бокового желудочка служит колено мозолистого тела. Сбоку и снизу он ограничен головкой хвостатого ядра. Прозрачная перегородка-этотонкая двухслойная мембрана, простирающаяся от колена мозолистого тела (спереди) до отверстия Монро (сзади) и образующая медиальную стенку каждого из передних рогов боковых желудочков.
Позади расположено тело бокового желудочка, проходящее под мозолистым телом. Его дно образовано дорсальной частью таламуса, а его медиальная стенка ограничена сводом мозга. В латеральном направлении тело бокового желудочка изгибается вокругтела и хвоста хвостатого ядра.
Преддверие бокового желудочка содержит сосудистый клубок и образуется за счет слияния тела с височным и затылочным рогами. Височный рог бокового желудочка отходит от его преддверия в передненижнем направлении. Его дно и медиальную стенку образует гиппокамп, а крышу-хвост хвостатого ядра. Затылочный рог полностью окружен трактами белого вещества, главным образом, зрительной лучистостью и большими щипцами мозолистого тела.
Отверстие Монро представляет собой Y-образную структуру с двумя длинными ветвями, проходящими к каждому боковому желудочку, и коротким общим стволом внизу, который соединяется с крышей третьего желудочка.
Дно третьего желудочка образовано несколькими чрезвычайно важными анатомическими структурами, включающими перекрест зрительных нервов, гипоталамус с серым бугром и воронкой гипофиза, сосцевидные тела и крышу покрышки среднего мозга.
В нижней части третьего желудочка расположены два ответвления, заполненные ликвором: слегка закругленное зрительное углубление и более заостренное воронкообразное углубление. Два небольших углубления, надэпифизарное и эпифизарное, образуют заднюю границу третьего желудочка. Межталамическое сращение (также называемое промежуточной массой) имеет вариабельные размеры и лежит между боковыми стенками третьего желудочка. Промежуточная масса не является истинной спайкой.
Водопровод мозга представляет собой удлиненный трубчатый канал, лежащий между покрышкой среднего мозга и пластинкой четверохолмия. Он соединяет третий желудочек с четвертым желудочком.
Четвертый желудочек представляет собой полость в форме неотшлифованного бриллианта, расположенную между мостом спереди и червем мозжечка сзади. Его крышу образуют верхний (передний) мозговой парус сверху и нижний мозговой парус снизу.
Четвертый желудочек имеет пять четко сформированных карманов. Задние верхние карманы представляют собой парные тонкие уплощенные углубления, заполненные ликвором и накрывающие миндалины мозжечка. Латеральные карманы имеют извитой ход в переднелатеральном направлении. Они вдаются в нижние отделы цистерн мостомозжечковых углов под средними ножками мозжечка. По латеральным карманам сосудистое сплетение проходит через отверстия Люшки в смежные субарахноидальные пространства. Треугольное слепое выпячивание, расположенное срединно дорсально, называется верхушкой шатра четвертого желудочка. Ее вершина обращена к червю мозжечка. Четвертый желудочек постепенно сужается в каудальном направлении образуя задвижку. Вблизи цервикомедуллярного перехода задвижка переходит в центральный канал спинного мозга.
На схематическом трехмерном изображении желудочковой системы в сагиттальной плоскости изображен нормальный внешний вид и пути сообщения желудочков головного мозга.
На рисунке срединного сагиттального среза через межполушарную борозду изображены САП с ликвором (синий цвет) между паутинной (фиолетовый цвет) и мягкой (оранжевый цвет) мозговыми оболочками. Центральная борозда отделяет лобную долю (спереди) от теменной доли (сзади). Мягкая мозговая оболочка тесно прилегает к поверхности головного мозга, тогда как паутинная оболочка связана с твердой. Желудочки сообщаются с цистернами и субарахноидальным пространством через отверстия Люшки и Мажанди. Цистерны в норме свободно сообщаются друг с другом.
3. Сосудистое сплетение и продукция ликвора. Сосудистое сплетение состоит из сильно васкуляризованных папиллярных разрастаний, которые состоят из соединительной ткани в центральных отделах, покрытой секреторным эпителием, производным эпендимы. Во время эмбрионального развития сосудистое сплетение формируется в месте контакта инвагинации сосудистой основы с эпендимальной выстилкой желудочков. Таким образом оно формируется по ходу всей сосудистой щели.
Наиболее крупное скопление сосудистого сплетения, клубок, расположено в преддверии каждого из боковых желудочков. Сосудистое сплетение простирается кпереди вдоль дна бокового желудочка, находясь между сводом мозга и таламусом. Затем оно погружается в межжелудочковое отверстие (Монро) и заворачивает назад, проходя вдоль крыши третьего желудочка. Сосудистое сплетение в теле бокового желудочка огибает таламус, попадая в височный рог, где заполняет сосудистую щель и залегает сверху и медиально от гиппокампа.
Ликвор преимущественно, но не исключительно, выделяется сосудистыми сплетениями. Роль, которую могут играть в секреции СМЖ межклеточная жидкость головного мозга, эпендима и капилляры мало изучена. Эпителий сосудистого сплетения выделяет ликвор со скоростью около 0,2-0,7 мл/мин или 600-700 мл/день. Средний объем СМЖ составляет 150 мл, при чем 25 мл находится в желудочках и 125 мл в субарахноидальных пространствах. Ликвор протекает через систему желудочков и через выходные отверстия четвертого желудочка попадает в САП. Основная часть СМЖ всасывается через грануляции паутинной оболочки, расположенных вдоль верхнего сагиттального синуса. СМЖ также дренируется в лимфатические сосуды полости черепа и позвоночного канала.
Не весь ликвор продуцируется сосудистым сплетением. Опок межклеточной жидкости головного мозга представляет значительный дополнительный источник СМЖ.
СМЖ играет существенную роль в поддержании гомеостаза межклеточной жидкости головного мозга и регуляции функционирования нейронов.
б) Цистерны и субарахноидальные пространства:
1. Обзор. САП находятся между мягкой и паутинной мозговыми оболочками. Борозды представляют собой заполненные ликвором пространства между извилинами. Локальные расширения САП образуют ликворные цистерны головного мозга. Эти цистерны располагаются у основания головного мозга вокруг ствола, вырезки намета мозжечка и большого затылочного отверстия. Многочисленные перегородки, покрытые мягкой мозговой оболочкой, пересекают САП по направлению от головного мозга к паутинной оболочке. Все цистерны САП сообщаются друг с другом и желудочковой системой, обеспечивая естественный путь для распространения патологических процессов (например, менингита, новообразований).
Цистерны головного мозга традиционно разделяют на супра-, пери- и инфратенториальные. Все они содержат многочисленные критически важные структуры, такие как сосуды и черепные нервы.
Супратенториальные/перитенториальные цистерны. Супраселлярная цистерна располагается между диафрагмой седла и гипоталамусом. Из критически важных структур в ней залегают воронка гипофиза, перекрест зрительных нервов и виллизиев круг.
Межножковая цистерна является задним продолжением супраселлярной цистерны. Цистерна располагается между ножками головного мозга и содержит глазодвигательные нервы, а также дистальные отделы основной артерии и проксимальные сегменты задних мозговых артерий. От верхушки основной артерии отходят важные перфорирующие артерии: таламоперфорирующие и таламоколенчатые, которые пересекают межножковую цистерну и заходят в ткань среднего мозга.
Перимезенцефальные (обводные цистерны) представляют собой тонкие крыловидные карманы субарахноидального пространства, которые отходят кзади и кверху из супраселлярной цистерны по направлению к четверохолмной цистерне. Они окружают средний мозг и содержат блоковые нервы, Р2 сегменты задних мозговых артерий, верхние мозжечковые артерии и базальные вены Розенталя.
Цистерна четверохолмия находится под валиком мозолистого тела, между эпифизом и пластинкой четверохолмия. Она сообщается с обводной цистерной латерально и верхней мозжечковой цистерной снизу. Цистерна четверохолмия содержит эпифиз, блоковые нервы, РЗ сегменты задних мозговых артерий, проксимальные части ворсинчатых артерий и вену Галена. Переднее расширение цистерны, цистерна промежуточного паруса, располагается под сводом мозга и над третьим желудочком. Цистерна промежуточного паруса содержит внутренние мозговые вены и медиальные задние ворсинчатые артерии.
Инфратенториальные цистерны. К непарным цистернам задней черепной ямки, имеющим срединную локализацию, относятся предмостная, премедуллярная и верхняя мозжечковая цистерны, а также большая цистерна. Боковые цистерны парные и включают мостомозжечковые и церебелломедуллярные цистерны.
Предмостная цистерна находится между нижней частью ската черепа и передней частью моста. В ней проходит множество важных структур, включая основную артерию, передние нижние мозжечковые артерии (ПНМА), а также тройничные и отводящие нервы (ЧН V и VI).
Премедуллярная цистерна является нижним продолжением предмостовой цистерны. Она находится между нижней частью ската черепа спереди и продолговатым мозгом сзади. Она продолжается книзу к большому затылочному отверстию и содержит позвоночные артерии и их ветви (например, ЗИМА) и подъязычные нервы (ЧН XII).
Верхняя мозжечковая цистерна находится между прямым синусом сверху и червем мозжечка снизу. Она содержит верхние мозжечковые артерии и вены. Сверху она сообщается через вырезку намета мозжечка с цистерной четверохолмия, а снизу-с большой цистерной. Большая цистерна располагается под нижними отделами червя мозжечка между продолговатым мозгом и затылочной костью. Она содержит миндалины мозжечка и тонзилло-полушарные ветви задних нижних мозжечковых артерий (ЗИМА). Большая цистерна плавно переходит в САП шейного отдела позвоночного канала.
Цистерны мостомозжечковых углов (ММУ) располагаются между мостом/мозжечком и каменистой частью височной кости. К наиболее важным содержащимся в них структурам относятся тройничные, лицевые и преддверно-улитковые нервы (ЧН V, VII и VIII). Другие находящиеся здесь структуры включают каменистые вены и ПНМА. Цистерны ММУ снизу сообщаются с церебелломедуллярными цистернами, иногда называемыми также «нижними» цистернами мостомозжечковых углов.
в) Рекомендации по визуализации. МРТ: тонкосрезовые 3D Т2-ВИ или FIESTA/CISS позволяют в лучшей степени детализировать СМЖ в желудочковой системе, САП и базальных цистернах, а также обеспечивают информативную визуализацию их содержимого. Исследование всего головного мозга с помощью последовательности FLAIR особенно полезно для оценки потенциальных аномалий в САП. Дефазировка спинов в условиях пульсирующего тока СМЖ может имитировать внутрижелудочковые патологические изменения, особенно в базальных цистернах и вокруг межжелудочкового отверстия. Недостаточное подавление сигнала от ликвора с «яркой» СМЖ может имитировать патологические изменения в САП.
(Слева) МРТ, Т2-ВИ, аксиальный срез: показана нормальная анатомия на уровне боковых желудочков. Лобные рога боковых желудочков разделены тонкой прозрачной перегородкой. Обратите внимание на отверстие Монро, соединяющее боковые желудочки с III желудочком.
(Справа) МРТ, Т2-ВИ, аксиальный срез на уровне водопровода мозга: определяется воронкообразное углубление III желудочка, сосцевидные тела, межножковая цистерна и цистерны четверохолмия. (Слева) МРТ, Т2-ВИ, аксиальный срез на уровне выпускных отверстий IV желудочка: определяется отверстие Мажанди и отверстия Люшки.
(Справа) МРТ, Т2 SPACE, сагиттальный срез: отмечается участок нормальной потери сигнала из-за эффекта потока ликвора в водопроводе мозга и отверстии Мажанди. Обратите внимание на зрительное и воронкообразное углубления III желудочка и верхушку шатра IV желудочка. (Слева) МРТ, Т2-ВИ, аксиальный срез: нормальная асимметрия боковых желудочков с преобладанием размеров правого над левым. Прозрачная перегородка слегка выгнута и смещена относительно срединной линии. При обнаружении асимметрии боковых желудочков важно внимательно изучить область отверстия Монро, чтобы исключить любую патологическую обструкцию.
(Справа) FLAIR, аксиальный срез: у пациента с гидроцефалией в III желудочке визуализируются заметные объемные псевдобразования, обусловленные пульсацией тока СМЖ.
г) Подход к дифференциальному диагнозу:
1. Желудочки и сосудистое сплетение:
— Обзор. Приблизительно в 10% случаев внутричерепных новообразований происходит вовлечение в патологический процесс желудочков головного мозга: как первично, так и при распространении образования. Подход, основанный на анатомии является наиболее эффективным, так как существует отчетливая склонность определенных поражений возникать в определенных желудочках или цистернах. Также бывает полезно учитывать возраст пациента. Специфические визуализационные признаки, такие как интенсивность сигнала, накопление контраста и наличие или отсутствие кальцификации, являются относительно менее важными, чем локализация и возраст пациента.
— Варианты нормы. Асимметрия боковых желудочков-это распространенный вариант нормы, так же, как и артефакт от пульсации тока СМЖ. Полость прозрачной перегородки (ППП)-частый вариант нормы, представляющий собой заполненное ликвором расщепление листков прозрачной перегородки. Удлиненное пальцевидное заднее продолжение ППП между структурами свода мозга, полость Верге (ПВ), может сочетаться с П П П.
— Объемное образование бокового желудочка. Кисты сосудистого сплетения (ксантогранулемы) являются частыми, обычно возрастными, дегенеративными находками, не имеющими клинического значения. Они представляют собой кисты неопухолевого и невоспалительного характера, обычно двусторонней локализации с кальцифицированными ободками. Они могут быть гиперинтенсивными на FLAIR и в 60-80% случаев имеют довольно высокую интенсивность сигнала на ДВИ. Объемное образование сосудистого сплетения с высокоинтенсивным накоплением контраста у ребенка с наибольшей вероятностью будет являться хориоидпапилломой. Объемное образование сосудистого сплетения (за исключением случаев ее локализации в четвертом желудочке) у взрослого человека обычно представляет собой менингиому или метастаз, а не хориодипапиллому.
Для некоторых образований боковых желудочков характерна специфичная локализация в их пределах. Выглядящее безобидным объемное образование в переднем роге бокового желудочка у взрослого среднего или пожилого возраста чаще всего является субэпендимомой. «Пенистое» объемное образование в теле бокового желудочка обычно представляет собой центральную нейроцитому. Кисты при нейроцистицеркозе могут встречаться во всех возрастных группах и практически в каждом содержащем СМЖ компартменте.
— Объемное образование в отверстии Монро. Наиболее частой «аномалией» в этой области является псевдопоражение, представляющее собой артефакт от пульсации ликвора. Единственной относительно частой патологией в этой области является коллоидная киста. Она редко встречается у детей и, как правило, наблюдается у взрослых. Артефакт оттока ликвора может имитировать коллоидную кисту, но масс-эффект в таком случае отсутствует. У ребенка с накапливающим контраст объемным образованием в межжелудочковом отверстии в круг дифференциального диагноза должны включаться туберозный склероз с субэпендимальным узелком и/или гигантоклеточная астроцитома. Объемные образования, такие как эпендимома, папиллома и метастаз встречаются редко.
— Объемное образование третьего желудочка. Опять же, наиболее частое «поражение» в данной области-это либо артефакт от тока СМЖ, либо нормальная структура (промежуточная масса). Коллоидная киста-единственная патология, которая часто встречается в третьем желудочке; в 99% случаев они вклиниваются в отверстие Монро. Вертебробазилярная долихоэктазия крайней степени может вдаваться в третий желудочек, иногда доходя вплоть до уровня межжелудочкового отверстия. Она не должна ошибочно приниматься за коллоидную кисту.
Первичные новообразования данной локализации у детей встречаются нечасто, они включают хориоидпапиллому, герминому, краниофарингиому и «сидячий» тип гамартомы серого бугра. Первичные новообразования третьего желудочка у взрослых также встречаются нечасто, примерами могут служить внутрижелудочковая макроаденома и хордоидная глиома. Нейроцистицеркоз встречается в данной локализации, но нечасто.
— Водопровод мозга. Кроме стеноза, патологические изменения собственно водопровода мозга встречаются редко. Большинство из них связано с объемными образованиями в смежных структурах (например, глиома пластинки четверохолмия).
— Объемное образование четвертого желудочка. Наиболее частыми патологическими изменениями собственно четвертого желудочка являются объемные образования у детей. В большинстве случаев встречаются медуллобластома, эпендимома и астроцитома. Менее часто здесь встречается атипичная тератоидно-рабдоидная опухоль (АТ/РО). Обычно она возникает у детей в возрасте до трех лет и может имитировать медуллобластому.
Метастазы в сосудистое сплетение или эпендиму, вероятно, являются наиболее частыми новообразованиями четвертого желудочка у взрослых. Первичные новообразования встречаются редко. Хориоидпапиллома встречается в данной локализации, а также в цистернах ММУ. Субэпендимома встречается у взрослых среднего возраста, локализуется в нижней части четвертого желудочка позади понтомедуллярного перехода. Недавно описанное редкое новообразование, розеткообразующая глионейрональная опухоль, представляет собой объемное срединное объемное образование четвертого желудочка. Она не имеет особых отличительных признаков при диагностической визуализации и, хотя может казаться агрессивной, является доброкачественным новообразованием (I степень злокачественности по классификации ВОЗ-grade I). Гемангиобластомы-это внутримозговые объемные образования, которые могут распространяться в четвертый желудочек. Эпидермоидные кисты и кисты при нейроцистицеркозе можно встретить во всех возрастных группах.
2. Субарахноидальные пространства и цистерны:
— Варианты нормы. Артефакты от тока СМЖ встречаются часто, особенно в базальных цистернах на FLAIR-изображениях. Mega cisterna magna может считаться вариантом нормы, как и киста промежуточного паруса (КПрП). КПрП представляет собой тонкое треугольное ликворное пространство между боковыми желудочками, лежащее под структурами свода мозга и над третьим желудочком. Иногда КПрП может иметь довольно крупные размеры.
— Объемное образование мостомозжечкового угла. У взрослых шваннома слухового нерва составляет почти 90% всех объемных образований ММУ-ВСП. Менингиома, эпидермоидная киста, аневризма и арахноидальная киста вместе представляют около 8% патологических изменений в этой локализации. Все другие менее частые нозологии, такие как липома, шванномы других черепных нервов, метастазы, нейроэнтерические кисты и т.д. составляют около 2%. У детей в условиях отсутствия нейрофиброматоза 2 типа шванномы слухового нерва очень редки. У детей могут встречаться эпидермоидные и арахноидальные кисты ММУ Распространение эпендимомы в латеральном направлении через отверстия Люшки может приводить к вовлечению в процесс ММУ
Кистозные объемные образования ММУ имеют свой особый дифференциальный диагноз. Шваннома слухового нерва с интрамуральным кистозным компонентом встречается реже, чем эпидермоидные и арахноидальные кисты. При нейроцистицеркозе иногда может вовлекаться в процесс ММУ При аномалии с большим эндолимфати-ческим мешком (неполное разделение улитки 2 типа) в задней стенке височной кости наблюдается объемное образование ликворной интенсивности сигнала. К другим менее частым объемным кистозным образованиям, встречающимся в мостомозжечковом углу, относятся гемангиобластома и нейроэнтерические кисты.
— Объемное образование большой цистерны. Вклинение миндалин мозжечка как врожденное (аномалия Киари I), так и вторичное (вследствие масс-эффекта в задней черепной ямке или внутричерепной гипертензии), является наиболее частым «объемным процессом» в данной области. Неопухолевые кисты (арахноидальные, эпидермоидные, дермоидные, нейроэнтерические) также могут иметь данную локализацию.
Для новообразований в большой цистерне и вокруг нее, таких как менингиома и метастаз, характерно расположение перед продолговатым мозгом. Субэпидемиома четвертого желудочка возникает в задвижке и располагается за продолговатым мозгом.
— Гиперинтенсивный сигнал на FLAIR-изображениях. Гиперинтенсивный сигнал от борозд и субарахноидальных пространств обусловлен либо МР-артефактами, либо различными патологическими изменениями. Патологическое повышение интенсивности сигнала на FLAIR обычно связано с присутствием крови (например, при субарахноидальном кровоизлиянии), белка (менингит) или клеток (метастазы в мягкую мозговую оболочку-субарахноидальное пространство). Реже гиперинтенсивный сигнал на FLAIR может возникать у пациентов с нарушением проницаемости гематоэнцефалического барьера или почечной недостаточностью при исследовании с контрастными веществами на основе гадолиния.
Редкие причины повышения интенсивности сигнала на FLAIR включают разрыв дермоидной кисты, болезнь мойамойа (симптом «плюща») и острую ишемию головного мозга. Накопление контраста помогает отличить менингит и метастазы от субарахноидального кровоизлияния и артефактов, вызванных током ликвора.
д) Список литературы:
1. Sakka L et al: Anatomy and physiology of cerebrospinal fluid. Eur Ann Otorhinolaryngol Head Neck Dis. 128(6):309-16, 2011