Среднеквадратичная разница соседних rr выше нормы что это значит
Научная электронная библиотека
Прекина В И, Самолькина О Г,
1.1. Вариабельность ритма сердца
Для оценки риска развития неблагоприятных сердечных событий широко используется анализ вариабельности ритма сердца (ВРС), которая представляет собой временные колебания интервалов между последовательными ударами сердца (интервалов RR) и рассматривается как маркер активности вегетативной нервной системы (ВНС) [206]. ВРС – количественное выражение, мера синусовой аритмии. В последние годы возрос интерес к изучению ВРС как показателя, отражающего автономную регуляцию сердца и определяющего риск внезапной сердечной смерти [100, 226, 228]. В настоящее время ВРС признана наиболее информативным и доступным методом оценки вегетативной регуляции сердечного ритма и является неотъемлемой частью обследования кардиологических больных [227].
Несмотря на большое количество исследований, свидетельствующих о взаимосвязи симпатики, парасимпатики, барорефлекса, системы терморегуляции, гуморальных влияний с определенными временными и спектральными показателями ВРС, к настоящему времени накоплен большой фактический материал, не позволяющий однозначно рассматривать ВРС как метод оценки вагосимпатического баланса. Так, эксперты клиники Мэйо (США), проанализировав работы за 20-летний период в области ВРС, отметили, что, учитывая множественный характер эндо- и экзогенных факторов, влияющих на формирование структуры ритма сердца, параметры ВРС не отражают истинное состояние ВНС у больных с кардиоваскулярной патологией.
Основной целью исследования ВРС при суточном мониторировании ЭКГ (на длительных промежутках времени) является оценка функционального состояния пациента. Функциональное состояние пациента – это способность и готовность организма выполнять различные функции (по И.К. Анохину, 1975) [5], в частности – поддержание его гомеостаза и интеллектуального состояния [11]. Общей мерой для всех этих функций можно считать энергию, затраченную на их выполнение. Живой организм при взаимодействии с внешней средой стремится достигнуть полезного результата с наименьшими энергетическими затратами.
Одним из показателей нормального функционирования систем является нормальная ВРС. Высокая ЧСС, снижение ВРС и синусовой аритмии являются неблагоприятными факторами при оценке функционального состояния пациента [4, 123, 224]. Преобладание симпатической активности характерно для состояния стресса и неблагоприятно сказывается на деятельности сердечно-сосудистой системы, приводит к развитию тахикардии, сердечных аритмий, ишемии миокарда, гипертонических кризов [28, 113, 222, 223]. У пациентов с АГ и цереброваскулярными заболеваниями имеются изменения ВРС с преобладанием активности симпатической нервной системы [108]. Снижение ВРС связано с возрастом [21, 87].
Инсульт приводит не только к повышению уровня катехоламинов плазмы, но и изменениям автономной регуляции сердечно-сосудистой системы, нарушению ВРС, что может негативно влиять на электрическую нестабильность миокарда, провоцировать аритмии, которые могут ухудшать гемодинамику и негативно влиять на репаративные процессы в зоне церебральной ишемии [36, 145, 184]. При развитии ишемического инсульта отмечалась положительная корреляция между частотными показателями ВРС и уровнями систолического и диастолического АД в дневные и ночные часы, что свидетельствует о едином механизме, участвующем в регуляции работы сердечно-сосудистой системы, и его нарушении у больных в остром периоде ИИ [24]. Дисфункция вегетативной регуляции сердечно-сосудистой системы влияет на выживаемость после инсульта [193, 264].
В острейшем периоде ИИ происходит угнетение вегетативной регуляции сердца со снижением всех параметров ВРС и циркадного
индекса (ЦИ) ЧСС. Выявлена прямая связь между суммарной вегетативной активностью (SDNN) и тяжестью неврологического дефицита в начале и по окончании острого периода [114]. Риск возникновения инсульта коррелирует с низкими показателями SDNN ночью [176]. При наличии депрессии у больных с инсультом SDNN был зна-
чительно ниже [246].
При инсульте наблюдалось большее, чем у пациентов с гипертоническим кризом, снижение временных показателей ВРС и ЦИ [23, 128]. Отмечено снижение ВРС у больных с АГ в острейшем периоде ИИ [23]. К концу острого периода увеличивается выраженность вегетативного дефицита у больных ХСН, что обусловлено диффузными изменениями сердечной мышцы, приводящими к перестройке внутрисердечного вегетативного аппарата [115].
При наличии выраженного неврологического дефицита по окончании раннего восстановительного периода инсульта у больных хронической сердечной недостаточностью I-II ФК в динамике, по сравнению с острым периодом (7–10-й день болезни), выявлено статистически значимое снижение ВРС, нарастание активности симпатико-адреналовой системы. Регресс неврологической симптоматики в раннем восстановительном периоде ишемического МИ сопровождается уменьшением вегетативной дисфункции по данным ВРС [51].
Лакунарный инсульт в остром периоде сопровождается изменениями ВРС [37]. Сниженная парасимпатическая активность коррелирует с неблагоприятным ранним прогнозом у лиц с атеротромботическим
инсультом [182].
В остром периоде инсульта происходит снижение ВРС, обусловленное поражением определенных мозговых структур [210, 211]. К концу острого периода максимальный дефицит вегетативных влияний на ритм сердца сохраняется у больных с инсультом в вертебрально-базилярной системе и при большом очаговом поражении [114]. Проспективное наблюдение на протяжении 1 года состояния вегетативного статуса у больных после инсульта в вертебрально-базилярном бассейне указывает на значительную стойкость выявленных нарушений ВРС [133]. Cнижение ВРС более выраженно при правосторонней локализации церебрального поражения. При этом самые низкие значения ВРС регистрировались при вовлечении в патологический очаг правого островка [265]. При правосторонней локализации инсульта независимо от поражения островковой доли имеется стойкий дефицит вегетативной регуляции, в большей степени за счет парасимпатической составляющей, что может быть связано с более неблагоприятным прогнозом [115].
В острейшем периоде ИИ у больных с преимущественным поражением каротидного бассейна с образованием больших и средних по размеру очагов отмечается стойкое нарушение сердечно-сосудистой автономной регуляции.
Выявлены взаимосвязи церебральной и центральной гемодинамики в остром периоде вертебробазилярного инсульта ишемического генеза, выражающиеся в снижении мозгового кровотока не только в бассейне позвоночных артерий, но и в целом, при одновременном увеличении показателей насосной функции сердца в первые сутки мозговой катастрофы и с последующим её снижением к концу 3-й недели; при этом падение сердечного индекса менее 1,8 являлось прогностически неблагоприятным [42].
К концу острого периода инсульта увеличивается выраженность вегетативного дефицита у больных с хронической сердечной недостаточностью (ХСН), что обусловлено диффузными изменениями сердечной мышцы, приводящими к перестройке внутрисердечного вегетативного аппарата [116]. Регресс неврологической симптоматики в раннем восстановительном периоде ИИ сопровождается уменьшением вегетативной дисфункции по данным ВРС [51].
ЦИ ЧСС характеризует изменчивость ритма в течение суток и является важной характеристикой патологического процесса. Циркадные колебания частоты кардиальных кризов тесно связаны с биоритмами изменений электрофизиологических свойств в миокарде [187]. В первые сутки ИИ отмечается существенное снижение ЦИ, сохраняющееся на протяжении последующих трех недель. При локализации очага в вертебро-базилярной системе снижение ЦИ носит стойкий характер и свидетельствует о стабильности нарушений функциональных резервов сердечно-сосудистой системы, поражение в каротидной системе сопровождается адекватной реакцией ЦИ в процессе восстановления [145]. У больных с различным течением инсульта встречаются разные варианты изменений вегетативной регуляции и неодинаковая степень их выраженности, что позволяет использовать оценку изменений обоих отделов ВНС для прогнозирования тяжести и исхода заболевания [173, 181, 183, 212].
Наиболее информативные критерии ВРС, которые с вероятностью 70–82 % ассоциируются с высоким риском летального исхода при инсульте: SDNN 1,45 (Макаров Л.М., 2011). Незначительное отклонение циркадного профиля от нормы (пограничное значение) считали при значении ЦИ в пределах 1,2–1,23.
Кроме временных показателей ВРС использовали метод «анализа коротких участков» [110]. Интегральное заключение по ВРС проводилось по доле участков с малой вариабельностью: если больше 60 %, то «Резко снижена», от 30 до 60 % – «Умеренно снижена», меньше
30 % – «Норма».
С помощью исследования ВРС можно получить новые дифференциально-диагностические критерии дисфункции сердечно-сосудистой системы, в том числе и в результате сосудистого церебрального поражения. ВРС представляет собой объективный и чувствительный индикатор церебральной функции при инсульте.
В табл. 1.1.1 представлена сравнительная характеристика ЧСС, показателей ВРС и ЦИ пациентов, включенных в исследование. Средняя ЧСС в исследуемых группах была примерно одинаковой. Максимальное снижение SDNN отмечено у пациентов ОГ: на 11,36 % (P ОГ ( n = 108)
О чем вам расскажет вариабельность сердечного ритма: гид
Как один параметр, измеренный с помощью смартфона, определяет состояние вашего организма
Многие ученые считают, что будущее за превентивной медициной: наши гаджеты будут собирать достаточное количество информации о показателях здоровья, чтобы можно было начать принимать меры еще до того, как появится реальная проблема. Пока это во многом мечты: точные замеры по-прежнему делаются в лабораториях и клиниках на дорогом и мощном оборудовании.
Тем не менее кое-что уже можно измерять и с помощью смартфона. Например — вариабельность сердечного ритма (heart rate variability, HRV). Мобильные приложения научились «распаковывать» простую метрику в десятки полезных данных об организме, по которой делаются выводы об уровне стресса, работе центральной нервной системы и многом другом.
Как это возможно? Расскажем в нашем гиде.
Космическая технология
Использовать HRV начали еще в 1960-х. Его придумали как неинвазивный способ измерять уровень стресса в организме, оценивать функциональное состояние, риск заболеть и другие параметры. Изначально HRV применяли, чтобы следить за самочувствием астронавтов. Но вариабельность оказалась таким всеобъемлющим показателем, что вскоре изучать ее стали и за пределами NASA.
Что такое вариабельность сердечного ритма
Если очень упрощать — это показатель, отражающий неравномерность вашего сердцебиения.
Сердце бьется с неравными интервалами. Если ваш пульс — 60 ударов в минуту, это не значит, что ваше сердце сокращается ровно раз в секунду. На самом деле, ваше сердцебиение выглядит примерно так:
И это совершенно нормально. Сердце и не должно биться равномерно, оно даже не должно к этому «стремиться». Напротив — чем больше неравномерность, она же вариабельность сердечного ритма, тем лучше ваше функциональное состояние.
Как измерить HRV?
Показатели вариабельности рассчитывают различные приложения. Среди них, к примеру, Welltory — один из топовых сервисов в этой сфере с российскими корнями. Есть еще HRV4Training — это приложение заточено под спортсменов и помогает понять, как тренировки влияют на вариабельность (и наоборот). Приложение платное, им пользуются профессиональные спортсмены вроде членов NBA, NHL и участников Олимпийских игр.
Если вы хотите повысить точность измерений, можно подключать к приложениям гаджеты, которые считывают показатель вариабельности сердечного ритма — например, нагрудный датчик, специальный фитнес-браслет или клипсу. Есть и такие приложения — в частности, CardioMood и Elite HRV, — где вариабельность измеряется не с помощью камеры, а исключительно с помощью кардиомониторов.
Также показатель вариабельности самостоятельно измеряют некоторые гаджеты: например, Apple Watch и Oura Ring (кольцо, чья основная цель — мониторинг сна). Результаты можно увидеть в приложениях Apple Health и Oura соответственно. Но тут есть нюанс: эти гаджеты измеряют всего один показатель вариабельности — и поэтому их нельзя использовать для расширенной аналитики, в том числе подключать к приложениям, разработанным именно для анализа вариабельности.
Обратите внимание, что не каждый гаджет подойдет для измерения вариабельности — например, популярные Fitbit и Mi Band не «отдают» значения интервалов между ударами сердца, поэтому на базе их данных нельзя вычислить параметры, связанные с HRV. Список подходящих устройств можно посмотреть, например, тут.
Какие показатели рассчитываются на базе HRV
Один из главных параметров вариабельности сердечного ритма — это SDNN (Standard Deviation of the Normal-to-Normal). Как можно догадаться из названия, он помогает узнать стандартное (среднеквадратичное) отклонение интервалов между ударами сердца — их еще называют RR-интервалами — от среднего значения. Именно этот параметр отслеживают Apple Watch, и его можно увидеть в приложении Apple Health.
Есть еще один важный параметр вариабельности, сходный с SDNN — RMSSD (Root Mean Square of Successive Differences). Для его расчета используется разница между каждым RR-интервалом и предыдущим интервалом — то есть этот показатель дает представление о динамике. Параметр RMSSD использует в измерении вариабельности кольцо Oura Ring — его вы увидите на графике HRV в приложении Oura.
И SDNN, и RMSSD, и RR-интервалы измеряются в миллисекундах (мс).
На базе полученных параметров — SDNN, RMSSD и RR-интервалов — высчитывают и другие показатели. Один из важнейших — это pNN50: он показывает вероятность того, что каждый случайно выбранный интервал будет отличаться от среднего более чем на 50 мс. Сравнивая здоровых людей с теми, у кого, например, есть проблемы с сердцем, можно увидеть, что у здоровых показатель pNN50 оказывается выше.
Еще на базе HRV рассчитываются «волны». Не будем углубляться в детали — просто представьте, что все RR-интервалы выстроили в столбики, и стали считать маленькие колебания волнами с высокой частотой (high frequency, HF), а большие — с низкой (low frequency, LF и very low frequency, VLF).
Какое отношение к здоровью имеют эти цифры?
Это главный вопрос. Речь здесь идет не прямом соответствии показателя состоянию организма (сдаешь анализ на кортизол –> понимаешь, какой у тебя уровень стресса), а о корреляции. Но — корреляции, подкрепленной большой статистикой.
Наблюдая, например, за показателем SDNN в течение длительных — суточных — измерений, ученые выяснили, что вариация этого показателя отражает, насколько хорошо в целом организм контролирует работу сердца. Это косвенно говорит о том, эффективна ли вегетативная (автономная) нервная регуляция организма. Обнаружили они это математически — проследив за корреляциями показателя SDNN и параметров, отражающих работу вегетатики.
Вегетативная система регулирует работу желез и внутренних органов в автономном режиме — в том смысле, что не зависит от воли человека: мы не можем усилием мысли заставить сердце биться быстрее или сузить зрачки. Состоит из двух дополняющих друг друга частей — симпатической и парасимпатической. Первая, вопреки названию, обычно не сулит ничего хорошего — это система, реагирующая на стресс. Вторая — регулирует работу организма в расслабленном, спокойном состоянии. Проще всего представить работу двух систем на примере травоядного животного — скажем, зебры: пока она мирно пасется, работает парасимпатическая система, при виде хищника включается система симпатическая. Чрезмерная, незатихающая активность симпатической системы у человека — признак хронического стресса.
Что делает с нами симпатическая и парасимпатическая нервная система. Источник: Silvia Bunge, ResearchGate
С RMSSD, который достаточно точен даже при краткосрочных замерах — около 5 минут, другая история. Ученые во время своих экспериментов, тоже математически, выяснили, что в коротких промежутках на разнице между соседними ударами сердца и вариабельности сердечного ритма больше сказывается парасимпатика — та часть автономной нервной системы, что отвечает за расслабление. Именно поэтому параметр RMSSD можно использовать для того, чтобы оценить, насколько хорошо организм сейчас восстанавливается.
В итоге: RMSSD — более точный параметр для краткосрочных замеров, больше реагирует на парасимпатику, позволяет прямо сейчас оценить восстановление; SDNN — менее точный в быстрых замерах, имеет смысл наблюдать за ним в динамике, чтобы оценить, насколько вы в стрессе, сбалансирована ли автономная нервная система и не является ли ваша симпатика чересчур активированной.
Про упомянутые выше «волны» установили такие соответствия: HF—волны отвечают в большей степени за работу парасимпатической системы и за дыхание. Если они в данный момент сильны, значит, вы активно восстанавливаетесь. Мощность HF-волн недостаточна? Возможно, организм работает из последних сил, и нужно сесть и расслабиться, помедитировать и подышать.
А вот LF-волны, напротив, отражают активность симпатической нервной системы — той самой, что отвечает мобилизацией на стресс. Если их мощность достаточна, значит, вы в тонусе. Слишком высокий показатель может говорить о том, что вы перенапряглись, и нужно сбавить обороты. Низкая активность LF волн — показатель того, что вы чересчур расслаблены, и надо собраться и добавить здорового стресса в жизнь.
Еще один важный показатель — это соотношение LF/HF. Оно отражает то, насколько сбалансирована работа вегетативной нервной системы между двумя ее отделами — симпатическим и парасимпатическим. В норме это соотношение должно быть не ниже единицы.
Показатель VLF тоже говорит скорее о состоянии организма в целом. Он помогает определить, справляется ли автономная нервная система с регуляцией вашего состояния — или для борьбы со стрессом уже приходится подключать центральную нервную систему.
Как это работает: пример
Я измерила вариабельность сердечного ритма во время написания этого текста. Все показатели оказались в порядке: SDNN равен 76 мс (это даже лучше, чем в среднем у женщин моего возраста — 25–35 лет), RMSSD — 59 мс, тоже чуть лучше, чем в среднем. Если же брать нормативные диапазоны, то я буду на верхней границе нормы — отличный результат. И pNN50, который у меня равен 32,8%, находится ровно на уровне среднего здорового молодого человека.
Приложение, которое я использовала — Welltory — выдало мне вердикт: сейчас вы в хорошем состоянии, у вас много энергии, а стресс оптимален. Поэтому, например, я могу сегодня пойти на силовую тренировку или взяться за сложную задачу по работе (чем я, собственно, и занимаюсь).
Но завтра мои параметры могут быть совсем иными — а значит, я получу другие советы и буду корректировать нагрузку в соответствии со своим состоянием.
Другой пример. Вчера я сделала измерение HRV перед сном.
Показатель HF-волн был на уровне 2170 мc2, LF — 1580 мc2. Соответственно, соотношение LF/HF было равно 0,7 — вроде бы ниже нормы. Но, как выяснилось, для позднего вечера это в самый раз: это значило лишь, что я хорошо восстанавливаюсь, и организм вошел в режим расслабления перед сном.
Показатель VLF оказался равен 4495 мc2. Приложение сказало мне, что это очень много — я, видимо, слишком вымоталась, и «из-за повышенного физического или эмоционального возбуждения автономная нервная система уже не справляется с управлением ритмом вашего сердца». В этот день я прошла около 12 тысяч шагов — это почти в два раза больше, чем я хожу обычно. Наверно, проблема была в этом.
Можно проще?
Для тех, кому лень разбираться во всем многообразии сложных параметров вариабельности, приложения предлагают простой «вердикт» — для этого показатели HRV переводятся в интуитивно понятные всем факторы. В случае с Welltory, которым пользуюсь я, это стресс, энергия и продуктивность (в вечернее время параметр «продуктивность» меняется на «тяжесть дня»).
Как рассчитываются эти факторы? Все довольно просто.
Есть готовые формулы, которые исследователи вывели математически, изучая разные параметры HRV, объективные и субъективные факторы самочувствия человека. Оказалось, что уровень стресса коррелирует с SDNN и LF — показателями, связанными с симпатикой. Энергия рассчитывается на базе работы парасимпатики, то есть параметров RMSSD и HF: чем хуже работает парасимпатическая нервная система, тем больше усталости копится — и энергии становится меньше. Наконец, показатель продуктивности/тяжести дня скоррелирован с работой префронтальной коры: чем больше она вынуждена вмешиваться в контроль за работой сердца, тем меньше ресурса остается для продуктивной работы. И определить это можно с помощью параметра VLF.
А как все эти готовые формулы применимы к жизни конкретного человека? Вот как: эти формулы «калибруются» под каждого пользователя приложения. Понятно, что мы все разные — и предсказать самочувствие любого случайного человека по одной и той же формуле было бы нереально. Поэтому приложение использует самообучающийся алгоритм — и в качестве исходных данных берет ваши замеры и обратную связь о самочувствии (картинка в правом верхнем углу).
Как применять это на практике?
Вариабельность сердечного ритма — хороший способ быстро и достаточно точно оценить функциональное состояние организма. В отличие от пульса, который в большей степени отражает реакцию организма на физическую активность, HRV учитывает также ментальную и эмоциональную нагрузку. Поэтому, измерив вариабельность сердечного ритма, вы можете в целом оценить, как ваше тело переносит все происходящее в вашей жизни.
Показатели, связанные с HRV, нестабильны. Поэтому интереснее всего наблюдать за ними в динамике. Если уж решите измерять вариабельность сердечного ритма, делайте это регулярно, желательно — в одно и то же время. Хотя бы 4–5 замеров в неделю — и со временем вы сможете увидеть какие-то тренды, заметить корреляцию параметров с образом жизни и, возможно, внести в него какие-то изменения.
Наверное, не стоит относиться к показателям вариабельности слишком серьезно. Замеры не должны заменять здравый смысл и ощущения, но они могут помочь в некоторых ситуациях. Например, так.
Современные возможности холтеровского мониторирования ЭКГ
1.Аппаратная часть
В настоящее время заметно сильное сходство аппаратной части многих современных систем холтеровского мониторирования (ХМ) ЭКГ. В большинстве систем регистраторы теперь с твердой памятью, размеры их примерно 11 х 7 х 2 см, масса около 100 гр. Регистрируются 3 независимых канала, т.е. накладывается 7 электродов. Регистрация непрерывная, 24 часа или более. На верхней панели регистратора обычно имеется кнопка «Метка плохого самочувствия».
С компьютером регистратор связывается через интерфейсный блок. Имеется гальваническая развязка, что обеспечивает электробезопасность пациента.
2.Кабель отведений
В некоторых системах ХМ используются неэкранированные кабели отведений, в основном, импортные. Предполагается, что роль экрана выполняет тело пациента, если провода прижаты к телу в нескольких местах пластырем. Однако даже незначительное изменение взаимного положения проводов одной пары (одного отведения) сильно меняет амплитуду наводки на данное отведение. Обычно наводка фильтруется и ее не видно, но из-за того, что резко изменялась «огибающая» наводки, после ее фильтрации остается искривление изолинии ЭКГ. Эти помехи соизмеримые по амплитуде и длительности с зубцами Р или Т. То что такого рода помехи вызваны не изменением сопротивления в электроде или мышечным тремором доказано экспериментально.
Экранированные кабели регистрируют ЭКГ в несколько раз ровнее. Для регистрации ЭКГ с искусственным водителем ритма (ИВР) такие кабели просто необходимы. Если использовать неэкранированные кабели, то фильтры должны быть включены. Но в этом случае резко сглаживаются импульсы. Использование детекторов импульсов проблему не решает, потому что амплитуда импульсов по разным причинам может в несколько раз уменьшиться. Остается один способ: использовать экранированные кабели и отключать фильтры.
3.Система отведений
В настоящее время стали общепризнанными два отведения: CS-2 и СМ-5.
CS-2 похоже на отведение V2 стандартной ЭКГ. Во многих случаях в этом отведении зубцы Р и волны мерцания наибольшей амплитуды. Используется также при анализе преходящей БПН и при ишемии перегородки.
Третье отведение в разных случаях нужно ставить по-разному. Чаще всего это IS похоже на AVF и позволяет выявить ишемию задней стенки. В случае ишемии передней или верхушечной области рекомендуется в качестве третьего отведения СМ-3 или СМ4. В случае ИВР рекомендуется CS’-2. Эта система отведений рекомендована в лучшей, на мой взгляд, книге по холтеровскому монитору /1/ (авторы Дабровски и Питрович).
К сожалению, что в настоящее время продолжают появляться новые системы ХМ с двумя каналами. В случае помех по одному каналу, остается один канал и «тонкая» диагностика становится затруднительной, т.к. довольно часто желудочковые комплексы могут иметь почти нормальный вид в одном из трех отведений. И наоборот, дельта-волна преходящего WPW может наблюдаться только в одном отведении. Зубец Р аберрантной наджелудочковой экстрасистолы (НЭ) часто виден также только в одном отведении.
4.Программа распознавания
Самой сложной задачей в распознавании холтеровской ЭКГ является распознавание средней степени зашумленных фрагментов. Игнорировать такие участки нельзя, т.к. врач визуально с такими участками справляется, а их может быть до 30 % и больше. Во многих системах ХМ с распознаванием очень большие проблемы: ЖЭ относят к помехам, помехи к экстрасистолам. Хорошо распознавание выполнено в системе «Миокард-Холтер» (г.Саров), поскольку там применен уникальный алгоритм распознавания образов методом искусственного интеллекта.
5.Анализ электрокардиограммы
В современных системах ХМ протокол автоматически формируется примерно из 10 разделов:
1. пульс,
2. вариабельности ритма
3. анализ ИВР
4. ритм, эпизоды ритма,
5. паузы,
6. наджелудочковая эктопическая активность,
7. желудочковая эктопическая активность,
8. анализ сегмента ST,
9. анализ интервала QT.
5.1. Пульс
Программа строит тренд пульса, таблицы и гистограммы по часам минимального, среднего и максимального пульса. Накапливает продолжительность тахикардии и брадикардии по диапазонам 150 уд/мин. Программа подготавливает минимальный и максимальный пульс, максимальный интервал RR.
5.2. Вариабельность ритма
В анализе вариабельности ритма не используются участки с нарушениями ритма. Программа вычисляет основные параметры временного анализа за все время обследования:
Нормы этих параметров для здоровых лиц приведем в монографии Макаров Л.М. /2/.
Для более точной оценки вариабельности ритма, с учетом ЧСС и времени суток рекомендуется метод «анализа коротких участков», по монографии Рябыкиной Г.В. /3/, разработанный в НИИ кардиологи им. Мясникова.
По всей ЭКГ обследования ищутся короткие участки, состоящие из 33 интервалов RR без нарушений ритма и помех. По этим участкам проводится анализ. Вариабельность одного короткого участка вычисляется как сумма разностей соседних интервалов RR. Далее все отобранные участки разносятся на 8 диапазонов по средней ЧСС участка. Для каждого диапазона вычисляется средняя вариабельность. Эмпирическим путем были получены нормы вариабельности для каждого диапазона ЧСС.
Для более глубокого анализа влияния симпатической и парасимпатической систем на вариабельность ритма рекомендуется спектральный анализ интервалов RR.
5.3. Анализ ИВР
Имеется возможность раскрыть этот раздел только на примере «Миокард-Холтер».
Для более правильной работы программы желательно указывать тип кардиостимулятора согласно монографии /4/. Если тип не известен, то программа определит его сама. Программа распознает навязанные, сливные и спонтанные комплексы, различные режимы стимуляции камер сердца, безответные импульсы, преждевременные навязанные комплексы и некоторые аллоритмии. В эпизодах спонтанного ритма работает программа анализа смены ритма. В протокол по данному разделу помещаются оценки количества различных кардиокомплексов, а также параметры периодов VA, AV, PV, PQ, периодов выскальзывания и ЧСС навязанных ритмов. Использование этих параметров позволяет более полно оценить настройки кардиостимулятора. Например, больной А.с преходящей AV-блокадой был поставлен кардиостимулятор DDD. Средний интервал PQ спонтанного ритма 0.10 с, средний интервал PV р-синхронизированного режима 0.11 с, интервал AV секвенциального режима также 0.11 с. Такая малая разница между PQ и PV, а также наличие большого количества сливных комплексов (23 %) свидетельствует о том, что интервал PV запрограммирован слишком коротким, что ранняя стимуляция желудочков «не дает » возможности спонтанному ритму. Если бы PV и AV были, например, 0.15, то спонтанного ритма было бы гораздо больше (около 90 %). Т.е. сердце работало бы физиологично.
5.4. Ритм, эпизоды ритма
Редактирование выявленных эпизодов ритма становится возможным, если использовать единицу редактирования «Эпизод». Не нужно путать с «эпизодами» в системе «Кардиотехника-4000». Там точнее подошло бы название не «эпизод N 38», а «фрагмент N 38». В системе «Миокард-Холтер» «эпизод» соответствует электрокардиографическому понятию и может длиться от нескольких секунд до нескольких часов. Была разработана форма представления эпизодов на ритмограмме и удобные средства их редактирования (добавить эпизод, изменить эпизод, изменить границы эпизода).
Все эпизоды в программе разнесены на три группы:
Программа диагностики выделяет следующие эпизоды ритма: синусового, нижнепредсердного, AV-ритма, желудочкового ритма, мерцательной аритмии, миграции водителя ритма, наджелудочковой пароксизмальной тахикардии, парасистолии.
К эпизодам преходящих нарушений проводимости программа относит преходящие БЛН, БПН, WPW. Интересно отметить, что после обнаружения эпизодов преходящего нарушения проводимости, программа достаточно верно диагностирует (начиная с начала записи) единичные комплексы с данным нарушением. Кстати на фоне этих нарушений по-прежнему диагностируются желудочковые экстрасистолы.
В большинстве систем ХМ этот раздел отсутствует или выполнен частично.
5.5. Паузы
Чтобы правильно диагностировать такие ситуации, разработаны параметры дыхательных волн ритмограммы. Подобный подход к диагностике пауз и наджелудочковых экстрасистол пока имеется только в «Миокард-Холтер».
5.6. Наджелудочковая эктопическая активность
Во всех системах ХМ классификация НЭ примерно одинакова: единичные, вставочные, парные, «НЖ + ЖЭ», групповые, бигеминия, тригеминия. В случае выраженной дыхательной аритмии некоторые экстрасистолы помечаются как «под?».
Внутри эпизодов мерцательной аритмии и миграции водителя ритма НЭ ставятся.
В протокол данного раздела идет общее количество экстрасистол, максимальное в час, а также раскладка по типам.
5.7. Желудочковая эктопическая активность
Классификация ЖЭ аналогична НЖ. Добавлена классификация единичных комплексов с преходящим нарушением проводимости. Все ЖЭ классифицируются также параметром «ранние» или нет.
По направлению QRS все ЖЭ разделяются на несколько морфологических классов. Подобное разделение можно наблюдать в большинстве импортных и отечественных ХМ. В некоторых системах допускается много классов ЖЭ, а учитывая слабое качество распознавания помех, большинство из них просто помехи. Врачу приходится тратить достаточно много времени, чтобы разобраться с ними. В системе «Миокард-Холтер» в конце анализа программа еще раз пересматривает все классы ЖЭ, обьединяет их, относит к помехам. В итоге остается число классов не более 7.
5.8. Анализ сегмента ST
В некоторых системах ХМ ST замеряют в точке, стоящей на 0.08 с от последней вершины R. Эта методика плоха. Во-первых, потому, что в трех синхронно регистрируемых отведениях в каждом отведении вершина R имеет свое положение, хотя длительность QRS во всех отведениях одинакова. В случае блокад, кода в ходе регистрации вершина R может смещаться то к началу, то к концу QRS, пользоваться такой методикой вообще не возможно.
В «Миокард-Холтер» ST замеряется в точке, стоящей на 0.04с от точки j (начала ST).
В случае обнаружения эпизодов преходящих блокад, WPW, артифициального ритма, в данных эпизодах ST не анализируется.
Программа строит тренды ST, отрицательных Т, показывает самые большие отклонений ST, Т, вычисляет суммарное время отклонения ST больше пороговых значений. Причем учитываются не только абсолютные пороги, которые врач может задавать по своему усмотрению, но и уровень ST в покое, чего не наблюдается в большинстве систем ХМ.
Хотя в литературе по ХМ принято не анализировать отрицательные зубцы Т т.к. они реагируют на слишком большое количество факторов, на наш взгляд тренды отрицательного Т могут быть полезны. Есть примеры больных ИБС, когда депрессия сегмента ST не выражена, а зубец Т при нагрузке меняет форму с положительного на сильно отрицательную.
5.9. Анализ интервала QT
Известно три варианта оценки увеличения интервала QT.
В первом варианте QT сравнивается с абсолютным порогом не зависимо от ЧСС. По данным Макарова Л.М. /2/, для детей таким порогом является 0.460 мс. Для взрослых порог варьирует от 0.480 до 0.510 мс.
Во втором варианте вычисляется Систолический показатель (СП) и продолжительность превышения СП больше порога (например 8 %).
В третьем варианте оценивается превышение QTc (корригированного) больше порогового значения.
В системе «Миокард-Холтер» предложены все три варианта. Все пороги врач может изменять. Программа стрит тренды QT, QT-нормы, QTс, находит самые большие отклонения QT, QTc, вычисляет суммарное время отклонения QT, QTc больше пороговых значений.
6. Основные окна интерфейсной программы
1) Окно просмотра ЭКГ. Здесь где можно задавать масштаб, скорость, количество отведений. Между двумя кардиокомплексами выводится либо ЧСС либо длительность RR. Имеется возможность замерить длительность и амплитуду параметров ЭКГ.
2) Гистограммы и таблицы. Имеется 90 гистограмм количества нарушений или отклонений по часам. Очень наглядно видно, в какой час было наибольшее количество нарушений или отклонений. Отмечая мышкой в гистограмме в нужное время можно сразу выйти на просмотр ЭКГ в данное время. На печать эта информация выводится в виде таблицы.
3) Список нарушений. Он представленный виде дерева. Он является основным механизмом при выборе нарушений для просмотра врачом. Удобно просматривать нарушения как с детальной, так и с общей классификацией. Например, можно просматривать все ЖЭ или только парные или только ранние и т.п. В принципе это развитие режима «Суперимпозиции».
4) Ритмограмма. На ней различные нарушения и помехи помечаются разными цветами. Отдельно отмечаются эпизоды ритма, преходящих нарушений проводимости и пр. со временем для врача это окно становится любимым для анализа нарушений ритма.
5) Тренды (графики) пульса, ST, отр.Т и QT. Здесь имеется механизм выхода на самые яркие места (минимальный, максимальный пульс, максимальное отклонения ST и т.д.) Удобно, то что имеется возможность менять шкалу трендов ( все 24 часа, 6 часов, 1 час, 30 минут), т.е. имеется возможность и в целом оценить например, график пульса или ST за все время обследования, и посмотреть динамику более подробно.
7. Редактирование и получение протокола
1)Исследование по разделам.
Как уже отмечалось, протокол автоматически формируется из 10 разделов. Поэтому логично рекомендуется и все исследование проводить по разделам. Выбрав раздел, удобно переходить внутри данной темы между гистограммами, списком нарушений, графиками ЭКГ, трендами и фрагментом заключения протокола. Удобство складывается из того, что занимаясь, какой то темой, например, ST, все касающееся ST как бы «под рукой».
Выполнена стратегия общего курсора для окна ЭКГ, ритмограммы и всех трендов. Т.е. листая ЭКГ будет двигаться курсор на ритмограмме и трендах. Если кликнуть мышкой в любое место ритмограммы или трендов, переместится и ЭКГ.
Имеется возможность редактировать на разных уровнях:
4)Единый список нарушений.
Где бы редактирование не производилось, оно автоматически сказывается везде: и в заключении и в гистограммах и в таблицах и в списках нарушений.
По мере исследования ЭКГ врач отправляет в очередь на печать примеры ЭКГ, трендов, ритмограммы. Причем, программа автоматически будет готовить комментарий, например, «максимальный пульс», «парная желудочковая экстрасистолия» и т.п. Врач может скорректировать комментарий. Отобранные фрагменты врач может просмотреть, удалить из очереди, например, заменив его более удачным. По окончании исследования врач отправляет фрагменты на принтер, при этом можно задать ориентацию страницы (альбомная или портретная). Программа попытается максимально использовать каждую страницу, разместив на них по несколько фрагментов.
Итак, протокол состоит из фрагментов графиков, заключения, которое формируется из фрагментов по каждому разделу, сводной таблицы, которая может быть на одной или нескольких страницах, в зависимости от выявленных нарушений. Удобно то, что структуру заключения и таблицы можно задавать флажками. Например, если не нужен раздел вариабельности ритма, надо просто убрать соответствующий флажок.
Заключение