Так как вл биссектриса равнобедренного треугольника то
Равнобедренный треугольник: свойства, признаки и формулы
Содержание:
Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, а третья сторона — основанием.
АВ = ВС — боковые стороны
Свойства равнобедренного треугольника
Свойства равнобедренного треугольника выражаются через 5 теорем:
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Доказательство теоремы:
Рассмотрим равнобедренный Δ ABC с основанием АС.
Боковые стороны равны АВ = ВС,
Следовательно углы при основании ∠ BАC = ∠ BСA.
Теорема о биссектрисе, медиане, высоте, проведенной к основанию равнобедренного треугольника
Доказательство теоремы:
Вывод:
Запомни! При решении таких задач опусти высоту на основание равнобедренного треугольника. Чтобы разделить его на два равных прямоугольных треугольника.
Доказательство теоремы:
Доказательство от противного.
Признаки равнобедренного треугольника
Формулы равнобедренного треугольника
Формулы сторон равнобедренного треугольника
Формулы длины стороны (основания — b):
Формулы длины равных сторон — (а):
Формулы высоты, медианы, биссектрисы равнобедренного треугольника
Формулы высоты, биссектрисы и медианы, через сторону и угол, (L):
Формула высоты, биссектрисы и медианы, через стороны, (L):
Площадь равнобедренного треугольника
Формула площади треугольника через высоту h и основание b, (S):
Биссектрисы равнобедренного треугольника
Свойства биссектрис равнобедренного треугольника
I. Биссектрисы углов при основании равнобедренного треугольника (проведенные к боковым сторонам), равны.
AN и BM — биссектрисы.
Рассмотрим треугольники ACN и BCM
(не забываем, как важно правильно назвать равные треугольники!).
1) AC=BC (по условию (как боковые стороны равнобедренного треугольника))
3) ∠ CAN= ∠ CBM (как углы, на которые биссектрисы делят равные углы при основании равнобедренного треугольника)
Следовательно, ∆ACN=∆BCM (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AN=BM.
Что и требовалось доказать.
Если в треугольнике два угла раны, то этот треугольник — равнобедренный (по признаку).
Если в треугольнике две стороны равны, то этот треугольник — равнобедренный (по определению).
Отсюда вытекает, что
Биссектрисы, проведенные из равных углов треугольника, равны.
Биссектрисы, проведенные к равным сторонам треугольника, равны.
(Вместо пары треугольников ACN и BCM можно было рассмотреть треугольники ABM и BAN.
1) AB — общая сторона
2) ∠ MAB= ∠ NBA (как углы при основании равнобедренного треугольника)
3) ∠ ABM= ∠ BAN (как углы, образованные биссектрисами равных углов).
Следовательно, треугольники ACN и BCM равны по стороне и двум прилежащим к ней углам).
II. Биссектриса угла при основании равнобедренного треугольника делит боковую сторону на отрезки, пропорциональные боковой стороне и основанию.
Свойства биссектрисы равнобедренного треугольника
В данной публикации мы рассмотрим основные свойства биссектрисы равнобедренного треугольника (внутренней и внешней), а также разберем пример решения задачи по данной теме.
Примечание: напомним, что равнобедренным называется треугольник, в котором две стороны равны (боковые), а третья является основание фигуры.
Свойства биссектрисы равнобедренного треугольника
Свойство 1
В равнобедренном треугольнике биссектрисы, проведенные к боковым сторонам, равны между собой.
Обратная формулировка: если две из трех биссектрис в треугольнике равны, значит он является равнобедренным.
Свойство 2
В равнобедренном треугольнике биссектриса, проведенная к основанию, одновременно является и медианой и высотой.
Свойство 3
Если известны стороны равнобедренного треугольника, то длину биссектрисы, проведенную к основанию, можно посчитать по формуле:
Примечание: данная формула следует из теоремы Пифагора ( l и a – катеты прямоугольного треугольника, b – его гипотенуза).
Свойство 4
Внешняя биссектриса угла равнобедренного треугольника, расположенного напротив его основания, параллельна этому основанию.
Примечание: к равнобедренному треугольнику применимы и другие свойства биссектрисы, приведенные в нашей публикации – “Определение и свойства биссектрисы угла треугольника”.
Пример задачи
Биссектриса равнобедренного треугольника с боковой стороной 25 см равняется 20 см. Найдите периметр фигуры.
Извлекаем квадратный корень из найденного значения и получаем 15 см.
Следовательно, основание треугольника равно 30 см (15 см ⋅ 2).
Периметр фигуры равен сумме всех ее сторон, т.е.: 25 см + 25 см + 30 см = 80 см.
Общие сведения
Геометрическая фигура является треугольником, если она состоит из трех точек, лежащих в одной плоскости и не лежащих на одной прямой. Она изучается в пятом классе. В геометрии принято сокращенное обозначение при помощи символа Δ, после которого следует писать произвольные три литеры (вершины) в алфавитном порядке. Например, ТUV.
Вершина — точка, из которой исходят два отрезка и образуют две стороны. Отрезок является элементом луча. Обозначается он двумя заглавными литерами (ТU, UV и т. д. ). Луч — часть прямой, имеющая только начало. Он необходим для построения отрезков, из которых состоят все фигуры геометрии.
Прямая — линия, проходящая в бесконечном пространстве. У нее не существует начала и конца. Математики обозначают ее произвольной маленькой латинской буквой (например, m). Кроме того, у равнобедренного Δ существуют и дополнительные параметры — биссектриса, медиана и высота. Первая делит любой угол (сокращенное обозначение — ∠) при вершине, из которой она исходит, на два ∠ с эквивалентной градусной мерой, т. е. пополам.
Медиана соединяет вершину и середину противоположной стороны, а высота — простой перпендикуляр. Он начинается в вершине и находится внутри треугольника, опускаясь на противолежащую сторону.
Теоремы о биссектрисах
Теорема о биссектрисах треугольника звучит таким образом: точка пересечения биссектрис — инцентр ΔTUV. Доказывается теорема по такому алгоритму:
Кроме того, существует еще одно утверждение, имеющее такой вид: любая высота равнобедренного треугольника является его биссектрисой и медианой.
Доказать его можно посредством такой методики:
Кроме того, существуют определенные свойства, которые могут быть полезными при решении задач. Их получают из теорем и других тождеств, доказываемые математиками.
Полезные свойства
Математики вывели пять полезных свойств для биссектрисы в равнобедренном Δ.
К ним относятся следующие:
Следует отметить, что в равностороннем треугольнике каждая биссектриса будет отсекать равные углы из каждой вершины.
В нем можно провести их всего три, а в равнобедренном — 2 высоты, 2 медианы, 2 биссектрисы, а также одну к основанию.
Пример решения
Чтобы усвоить материал, необходимо решить задачу по геометрии. Ее условие имеет такой вид:
Необходимо найти значение высоты. Решать нужно по такому алгоритму:
Следовательно, высота равнобедренного Δ со сторонами 10 и 20 см эквивалентна 5[5]^(½) см. Существуют и более сложные задачи, в которых требуется составлять уравнения. Например, условие одной из них имеет такой вид:
Необходимо найти периметр треугольника. Для решения задачи необходимо составить определенный алгоритм:
Задача решена в полном объеме. Из методики решения видно, что сначала нужно записать основную формулу, а затем найти неизвестные в ней величины по другим вспомогательным тождествам.
Таким образом, при решении задач по геометрии необходимо знать основные определения, формулы, свойства и теоремы, которые также могут быть полезны.
Равнобедренный треугольник: свойства, признаки и формулы
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Определение равнобедренного треугольника
Какой треугольник называется равнобедренным?
Давайте посмотрим на такой треугольник:
На рисунке хорошо видно, что боковые стороны равны. Это равенство и делает треугольник равнобедренным.
А вот как называются стороны равнобедренного треугольника:
AB и BC — боковые стороны,
AC — основание треугольника.
Для понимания материала нам придется вспомнить, что такое биссектриса, медиана и высота, если вы вдруг забыли.
Биссектриса — луч, который исходит из вершины угла и делит этот угол на два равных угла.
Даже если вы не знаете определения, то про крысу, бегающую по углам и делящую их пополам, наверняка слышали. Она не даст вам забыть, что такое биссектриса. А если вам не очень приятны крысы, то вместо нее бегать может кто угодно. Биссектриса — это киса. Биссектриса — это лИса. Никаких правил для воображения нет. Все правила — для геометрии.
Обратите внимание на рисунок. В представленном равнобедренном треугольнике биссектрисой будет отрезок BH.
Медиана — отрезок, который соединяет вершину треугольника с серединой противолежащей стороны.
Для медианы не придумали веселого правила, как с биссектрисой, но можно его придумать. Например, буддийская запоминалка: «Медиана — это Лама, бредущий из вершины треугольника к середине его основания и обратно».
В данном треугольнике медианой является отрезок BH.
Высота треугольника — перпендикуляр, опущенный из вершины треугольника на противоположную сторону или на прямую, содержащую сторону треугольника.
Высотой в представленном равнобедренном треугольнике является отрезок BH.
Признаки равнобедренного треугольника
Вот несколько нехитрых правил, по которым легко определить, что перед вами не что иное, как его величество равнобедренный треугольник.
Свойства равнобедренного треугольника
Чтобы понять суть равнобедренного треугольника, нужно думать как равнобедренный треугольник, стать равнобедренным треугольником — и выучить 4 теоремы о его свойствах.
Теорема 1. В равнобедренном треугольнике углы при основании равны.
Пусть AС — основание равнобедренного треугольника. Проведем биссектрису DK. Треугольник ADK равен треугольнику CDK по двум сторонам и углу между ними (AD = DC, DK — общая, а так как DK — биссектриса, то угол ADK равен углу CDK). Из равенства треугольников следует равенство всех соответствующих элементов, значит угол A равен углу C. Изи!
Теорема 2: В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.
Δ ABH = Δ CBH по двум сторонам и углу между ними (углы ABH и CBH равны, потому что BH биссектриса, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, AH = HC и BH — медиана.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит, они равны по 90 градусов и BH — высота.
Теорема 3: В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.
Δ ABH = Δ CBH по трём сторонам (AH = CH равны, потому что BH медиана, AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, углы BHA и BHC равны, а ещё они смежные, т. е. в сумме дают 180 градусов. Значит они равны по 90 градусов и BH — высота.
Теорема 4: В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.
Δ ABH = Δ CBH по признаку прямоугольных треугольников, равенство гипотенуз и соответствующих катетов (AB = BC, потому что Δ ABC равнобедренный, BH — общая сторона).
Значит, во-первых, углы ABH и CBH равны и BH — биссектриса.
Во-вторых, AH = HC и BH — медиана.
Примеры решения задач
Нет ничего приятнее, чем поупражняться и поискать углы и стороны в равнобедренном треугольнике. Ну… почти ничего.
Задачка раз. Дан ΔABC с основанием AC: ∠C = 80°, AB = BC. Найдите ∠B.
Поскольку вы уже знакомы с различными теоремами, то для вас не секрет, что углы при основании в равнобедренном треугольнике равны, а треугольник ABC — равнобедренный, так как AB = BC.
Не должно вас удивить и то, что сумма углов треугольника равна 180°.
∠B = 180° − 80° − 80° = 20°.
Задачка два. В треугольнике ABC провели высоту BH, угол CAB равен 50°, угол HBC равен 40°. Найдите сторону BC, если BA = 5 см.
Сумма углов треугольника равна 180°, а значит в Δ ABH мы можем узнать угол ABH, который будет равен 180° − 50° − 90° = 40°.
А ведь получается, что углы ABH и HBC оба равны по 40° и BH — биссектриса.
Ну и раз уж BH является и биссектрисой, и высотой, то Δ ABC — равнобедренный, а значит BC = BA = 5 см.
Изучать свойства и признаки равнобедренного треугольника лучше всего на курсах по математике с опытными преподавателями в Skysmart.