Серопревалентность к вирусу что это
Распределение серопревалентности к SARS-CoV-2 среди жителей Тюменской области в эпидемическом периоде COVID-19
Полный текст:
Аннотация
Целью сероэпидемиологического исследования было определение уровня и структуры популяционного иммунитета к вирусу SARS-CoV-2 среди населения Тюменской области в период интенсивного распространения COVID-19.
Материалы и методы. Отбор добровольцев для исследования проводился путем анкетирования и рандомизации. Критерием невключения являлась активная инфекция COVID-19 на момент обследования. На наличие специфических антител к SARS-CoV-2 были обследованы 2758 человек. Возраст опрошенных добровольцев составлял от 1 года до 70 лет и старше.
Результаты исследования. Среди населения Тюменской области в активной фазе заболеваемости COVID-19 наблюдалась умеренная (24,5%) серопревалентность к SARS-CoV-2. Одновременно с этим выявлена высокая (97,8%) частота случаев бессимптомной инфекции у серопозитивных людей, у которых в анамнезе не было заболевания COVID-19, положительного результата ПЦР и симптомов острых респираторных вирусных инфекций в день обследования. Максимальные показатели коллективного иммунитета, установленные у детей 1-6 лет (34,7%), были статистически значимыми по сравнению со средним уровнем серопревалентности для всей когорты. У реконвалесцентов COVID-19 антитела обнаруживались в 68,2% случаев. У лиц с положительным результатом ранее проведенного ПЦР-анализа антитела выявляются в 64% случаев.
Вывод. Результаты исследования состояния коллективного иммунитета к вирусу SARS-CoV-2 необходимы для разработки прогноза развития эпидемиологической ситуации, а также для планирования мероприятий по специфической и неспецифической профилактике COVID-19.
Ключевые слова
Введение
В России, согласно официальным данным Роспотребнадзора, к 12.07.2020 г. выявлено 727 162 заболевших, 561 061 выздоровевших и 11 335 умерших. Случаи коронавируса регистрируются практически на всей территории РФ. Наибольшая заболеваемость зарегистрирована в Москве, наименьшая — в Чукотском и Ямало-Ненецком округах, а также на арктических островных территориях РФ.
В Тюменской области первый случай выявлен 31.01.2020 г., источником инфекции была гражданка КНР, прибывшая из г. Цзинань провинции Шаньдун. Спорадические случаи регистрировались до 9 апреля 2020 г. Устойчивый рост заболеваемости начался с 16-й недели 2020 г., максимальный уровень был достигнут на 28-й неделе и составил 36,87 случая на 100 тыс. населения. В последующем кумулятивная заболеваемость постепенно увеличивалась и в период с 26-й по 30-ю неделю выросла на 195% (рис. 1). Таким образом, говорить о существенном прогрессе в ликвидации эпидемической вспышки COVID-19 на территории Тюменской области пока еще преждевременно.
С точки зрения текущей ситуации по COVID-19 и необходимости разработки эффективных мер управления эпидемическим процессом, важным направлением является исследование уровня популяционного иммунитета среди населения региона. Существует два пути достижения порогового уровня коллективного иммунитета: увеличение прослойки лиц, перенесших инфекционное заболевание, в данном случае COVID-19, в манифестной или бессимптомной формах, либо вакцинация населения с охватом не менее 60% восприимчивых лиц [1][2]. Разработка вакцин, несмотря на интенсивные исследования со стороны производителей, — дело не быстрое и требует тщательного подхода к оценке безопасности, специфичности и эффективности [3]. В этих условиях единственно реальной остается надежда на формирование коллективного иммунитета в результате манифестной инфекции или инаппарантной сероконверсии. Принята точка зрения, что для прерывания инфекционного процесса необходимо, чтобы невосприимчивость к инфекции сформировалась не менее чем у 50-60% восприимчивой популяции [2]. При этом необходимо тщательно отслеживать динамику процесса и степень гетерогенности популяции, от которой могут существенно зависеть темпы формирования как индивидуальной, так и коллективной резистентности к инфицированию SARS-CoV-2 [4].
В связи с изложенным целью проведенного сероэпидемиологического исследования было определение уровня и структуры популяционного иммунитета к вирусу SARS-CoV-2 среди населения Тюменской области в период интенсивного распространения COVID-19.
Рис. 1. Заболеваемость COVID-19 в Тюменской области.
Стрелками обозначен период проведения исследований по серопревалентности среди населения области (24–25-я недели года).
Fig. 1. COVID-19 incidence in Tyumen Region.
The arrows show the period when the seroprevalence study was conducted (the 24th–25th week of the year).
Материалы и методы
Работа проводилась в рамках первого этапа широкомасштабного проекта Роспотребнадзора по оценке популяционного иммунитета к вирусу SARS-CoV-2 у населения России с учетом протокола, рекомендованного ВОЗ [5]. Исследование одобрено локальным этическим комитетом ФБУН НИИ эпидемиологии и микробиологии имени Пастера. Перед его началом исследования все участники или их юридические были ознакомлены с целью, методикой исследования и подписали информированное согласие.
Отбор добровольцев для исследования проводили методом анкетирования и рандомизации. Критерием исключения была активная инфекция COVID-19 в момент анкетирования.
Объем выборки определяли по формуле:
n — объем выборки;
t — уровень точности (для 95% ДИ t = 1,96);
p — оценочная распространенность изучаемого явления (при 50% p = 0,5);
m — допустимая ошибка 5% [6].
Всего было проанкетировано 7163 волонтера, из них у 3030 человек отбирали пробы крови из вены для последующего исследования на наличие специфических антител к SARS-CoV-2. Всего было протестировано 2758 проб.
Возраст обследованных добровольцев варьировал от 1 года до 70 лет и старше (табл. 1).
Таблица 1. Серопревалентность у жителей Тюменской области разных возрастных групп
Table 1. Seroprevalence in residents of Tyumen Region, different age groups
Возрастная группа, лет Age group, years
обследованных, человек Number of the examined, persons
Уровень серопревалентности к SARS-CoV-2 среди жителей Хабаровского края на фоне эпидемии COVID-19
Полный текст:
Аннотация
Введение. В Хабаровском крае первые 3 случая заболевания COVID-19 диагностированы 19 марта 2020 г., они были завозными из Аргентины (транзит через Италию). Эпидемический процесс COVID-19 в Хабаровском крае характеризуется медленным нарастанием заболеваемости, в период проведения исследования серопревалентности к вирусу SARS-CoV-2 показатели заболеваемости варьировали от 35,9 до 39,1 на 100 тыс. населения. В последующие 5 нед продолжился рост заболеваемости, максимальный уровень составил 67,3 на 100 тыс. населения. Статистически значимое снижение заболеваемости отмечалось в первой декаде августа.
Цель. Определение уровня и структуры популяционного иммунитета к вирусу SARS-CoV-2 среди населения Хабаровского края в период интенсивного распространения COVID-19 (с 9 по 21 июня 2020 г.). Материалы и методы. Работа проводилась в рамках первого этапа широкомасштабного проекта Роспотребнадзора по оценке популяционного иммунитета к вирусу SARS-CoV-2 среди населения России с учетом протокола, рекомендованного ВОЗ. Отбор волонтеров для исследования проводили методом анкетирования и рандомизации путем случайной выборки. В анализ включены результаты обследования 2675 человек. Количество волонтеров во всех возрастных группах было сопоставимым.
Результаты. Коллективный иммунитет населения Хабаровского края составил 19,6%. Максимальный уровень популяционного иммунитета установлен у детей 14–17 (34,4%) и 7–13 лет (24,8%), лиц старше 70 лет (22,6%). Наибольший уровень серопозитивности, кроме детей и пожилых, выявлен среди работников образования (26,7%), наименьший — у военных (8,7%) и безработных (8,3%). Статистически значимых различий по уровню серопревалентности между мужчинами и женщинами не установлено.
Выводы. В результате сероэпидемиологического исследования показано, что в Хабаровском крае при наличии контактов с больными COVID-19 вероятность сероконверсии увеличилась в 1,4 раза. После перенесенной инфекции COVID-19 антитела выявлялись в 58,9% случаев. У лиц с позитивным результатом ПЦР-анализа, полученным ранее, антитела выявлены в 50% случаев. Установлена высокая доля бессимптомной инфекции среди серопозитивных волонтеров — 93,7%.
Ключевые слова
Введение
Пандемия COVID-19 была объявлена ВОЗ в феврале 2020 г. [1]. Инфекция распространяется с такой скоростью, которая заставляет ученых и политиков всего мира предпринимать беспрецедентные меры контроля эпидемического процесса.
В Хабаровском крае первые 3 случая заболевания диагностированы 19 марта 2020 г., эти случаи были завозными из Аргентины (транзит через Италию). Эпидемический процесс COVID-19 в Хабаровском крае характеризовался медленным нарастанием заболеваемости в течение 18 нед (рис. 1).
В период проведения исследования серопревалентности к вирусу SARS-CoV-2 показатели варьировали от 35,9 (95% доверительный интервал (ДИ) 32,7–39,3) до 39,1 (95% ДИ 35,8–42,7) на 100 тыс. населения. В последующие 5 нед отмечалось увеличение числа случаев, максимального уровня — 67,3 (95% ДИ 62,9–71,8) на 100 тыс. населения — заболеваемость достигла 20 июля 2020 г. В первой декаде августа установлено статистически значимое снижение заболеваемости. Исследование популяционного иммунитета было проведено с 9 по 21 июня 2020 г. в период нарастания интенсивности эпидемии COVID-19.
Географическое расположение Хабаровского края представляет интерес в связи с тем, что на юго-востоке по реке Уссури он имеет границу с территорией КНР (провинция Хейлунцзян). Это представляется существенным эпидемиологическим фактором, обусловливающим трансграничную миграцию и реальную вероятность завоза инфекции.
Формирование популяционного иммунитета к вирусу SARS-CoV-2 приобретает особое значение для контроля эпидемиологической обстановки и планирования комплекса мероприятий по специфической и неспецифической профилактике COVID-19 [2]. Отсюда следует, что наличие широкой иммунной прослойки будет предпосылкой эффективного снижения скорости распространения инфекции.
Уровень популяционного иммунитета населения определяет вероятность распространения и тяжесть течения любого массового инфекционного заболевания [3][4]. В наивной популяции патогенный возбудитель, вызвавший эпидемическую вспышку, может неконтролируемо циркулировать, вызывая манифестные формы инфекции [5]. Если патоген обладает высокой контагиозностью, как, например, возбудители острых респираторных вирусных инфекций, в том числе SARS-CoV-2, то заболевание приобретает эпидемический характер и может существовать до того момента, пока число серопозитивных лиц не превысит число серонегативных. Применительно к COVID-19 считается, что этот порог составляет 60–70% вовлеченных в эпидемический процесс [6]. Вместе с тем эпидемический порог не является величиной застывшей и может изменяться в зависимости от конкретных условий жизнедеятельности, климатогеографических условий, интенсивности миграции населения, степени развития туризма и др.
Целью сероэпидемиологического исследования было определение уровня и структуры популяционного иммунитета к вирусу SARS-CoV-2 среди населения Хабаровского края в период интенсивного распространения COVID-19.
Материалы и методы
Работа проводилась в рамках первого этапа широкомасштабной программы Роспотребнадзора по оценке популяционного иммунитета к вирусу SARS-CoV-2 у населения России, разработанной с учетом протокола, рекомендованного ВОЗ [2]. Исследование одобрено локальным этическим комитетом ФБУН НИИ эпидемиологии и микробиологии им. Пастера. Перед началом исследования все участники или их юридические представители были ознакомлены с целью, методикой исследования и подписали информированное согласие.
Отбор волонтеров для исследования проводили методом анкетирования и рандомизации путем случайной выборки. Критерием исключения была активная инфекция COVID-19 в момент анкетирования.
Объем выборки определяли по формуле:
где:
n — объем выборки;
t — уровень точности (для 95% ДИ t = 1,96);
p — оценочная распространенность изучаемого явления (при 50% p = 0,5);
m — допустимая ошибка 5% [7].
Всего анкеты заполнили 7216 волонтеров, из них у 2688 человек отбирали пробы крови из вены для последующего исследования на наличие специфических антител к SARS-CoV-2. В анализ включены результаты обследования 2675 человек.
Возраст обследованных добровольцев варьировал от 1 года до 70 лет и старше (табл. 1).
Таблица 1. Серопревалентность к вирусу SARS-CoV-2 у жителей Хабаровского края разных возрастных групп
Table 1. Seroprevalence to SARS-CoV-2 virus in residents of the Khabarovsk Krai of different age groups
Число волонтеров во всех возрастных группах было сопоставимым. Учитывая особенности детского возраста, первую группу разделили на три подгруппы: 1–6, 7–13 и 14–17 лет. Из всей когорты волонтеров доля лиц с наличием верифицированного диагноза COVID-19 в анамнезе составила 2,1% (n = 56).
Пробы крови волонтеров отбирали в вакутейнеры с ЭДТА и центрифугировали. Плазму отделяли от клеточных элементов, переносили в пластиковые пробирки и хранили до исследования при 4°С. Содержание антител к SARS-CoV-2 определяли методом иммуноферментного анализа (ИФА) с использованием набора реагентов для анализа сыворотки или плазмы крови человека на наличие специфических иммуноглобулинов класса G (IgG) к нуклеокапсиду вируса SARS-CoV-2 (ФБУНГНЦ ПМБ Роспотребнадзора). Результаты учитывали качественным методом и считали положительными при превышении уровня cut-off [2].
Статистическую обработку проводили с использованием методов вариационной статистики с помощью статистического пакета Excel и программного продукта «WinPepi v.11.65»). Для оценки достоверности различий сравниваемых показателей использовали ДИ и уровень вероятности. Тенденция заболеваемости COVID-19 в Хабаровском крае рассчитана методом регрессионного анализа.
Результаты
Уровень серопревалентности среди населения Хабаровского края
Серопревалентность к SARS-CoV-2 среди жителей Хабаровского края во всей когорте обследованных составила 19,6%. По возрастным группам показатели серопревалентности варьировали в диапазоне от 14,7 до 34,4% (табл. 1). Максимальный уровень сероконверсии выявлен в детской возрастной группе (преимущественно за счет детей в возрасте 14–17 лет). В старшей возрастной группе (50 лет и старше) уровень серопревалентности существенно не отличался от таковой среди детей 1–17 лет. Обращает на себя внимание сравнительно низкий уровень сероконверсии у лиц 30–39 и 40–49 лет (рис. 1), различия с детской группой статистически значимы в возрасте 40–49 лет (p 0,05).
Таблица 6. Доля лиц с бессимптомным течением COVID-19, в том числе в различных возрастных группах, в Хабаровском крае в июне 2020 г.
Table 6. The proportion of people with asymptomatic COVID-19 in different age groups in the Khabarovsk Krai in June 2020
Обсуждение
В результате сероэпидемиологического исследования в Хабаровском крае установлено, что общая серопозитивность на IgG-антитела к SARS-CoV-2 в период нарастания интенсивности эпидемического процесса COVID-19 составила 19,6%. Этот показатель существенно не отличается от уровня серопревалентности в Ленинградской области (20,7%). Результаты тестирования дают основание полагать, что в настоящий период времени, независимо от пола, риск заражения COVID-19 наиболее высок для населения активного, трудоспособного возраста, особенно в диапазоне 30–49 лет (уровень выявления антител в этой группе составил 14,7–15,4%).
К территориям наиболее высокого риска заражения вирусом SARS-CoV-2 предположительно можно отнести г. Комсомольск-на-Амуре, Хабаровский район и некоторые другие. Однако данный вывод требует дальнейшего изучения из за малой выборки, полученной в ходе настоящего исследования для ряда административных образований.
Установлен высокий (93,7%) удельный вес бессимптомных форм COVID-19 среди лиц с наличием в сыворотке крови антител к возбудителю SARS-CoV-2. Также отмечается относительно низкая стойкость выработанного иммунитета после перенесенной инфекции — лишь у 58,9% обследованных волонтеров были выявлены антитела. Аналогичные результаты получены и при оценке данных лиц с положительным анализом ПЦР в анамнезе (50,0%). Гендерных отличий в обеих группах не отмечено. Выявлена статистически значимая более высокая доля серопозитивных лиц среди контактировавших с больными COVID-19 по сравнению с волонтерами, не имевшими контакта, — 25,8 и 18,6% соответственно. Наименьший уровень серопревалентности установлен в группах безработных граждан и военнослужащих, наибольший — среди детей школьного возраста и подростков (7–13 и 14–17 лет), а также работников сферы образования.
Выводы
1. Коллективный иммунитет совокупного населения Хабаровского края составил 19,6%.
2. Максимальный уровень коллективного иммунитета установлен у детей 14–17 (34,4%) и 7–13 лет (24,8%), у взрослых старше 70 лет (22,6%).
3. Наибольший уровень серопозитивности, кроме детей и пожилых, выявлен среди работников образования (26,4%), силовых структур (22,45), рабочих (20,0%) и работающих в сфере здравоохранения (18,9%).
4. Наименьший уровень серопозитивности выявлен у безработных (8,3%) и военных (8,7%).
5. Не установлено статистически значимых гендерных различий по уровню серопревалентности.
6. При наличии контактов с больными COVID-19 вероятность сероконверсии увеличивается в 1,4 раза.
7. Среди волонтеров, перенесших инфекцию COVID-19, антитела к вирусу SARS-CoV-2 выявлены в 58,9% случаев.
8. У лиц с позитивным результатом ПЦР-анализа, полученным ранее, антитела обнаружены в 50% случаев.
9. Доля бессимптомного течения инфекции среди серопозитивных волонтеров составила 93,7%.
Список литературы
1. ВОЗ. Выступление Генерального директора ВОЗ на прессбрифинге по коронавирусной инфекции 2019-nCoV, 11 февраля 2020 г. Available at: https://www.who.int/ru/dg/speeches/detail/who-director-general-s-remarks-at-the-mediabriefing-on-2019-ncov-on-11-february-2020
2. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Башкетова Н.С., Фридман Р.К., Лялина Л.В. и др. Популяционный иммунитет к SARS-COV-2 среди населения Санкт-Петербурга в период эпидемии COVID-19. Проблемы особо опасных инфекций. 2020; (3): 124–130. DOI: 10.21055/0370-1069-2020-3-124-130
3. Association for Professionals in Infection Control and Epidemiology. Herd immunity; 2020. Available at: https://apic.org/monthly_alerts/herd-immunity/
4. Metcalf C.J.E., Ferrari M., Graham A.L., Grenfell B.T. Understanding herd immunity. Trends Immunol. 2015; 36(12): 753–55. https://doi.org/10.1016/j.it.2015.10.004
5. Gomes M.G.M., Corder R.M., King J.G., Langwig K.E., Souto-Maior C., Carneiro J., et al. Individual variation in susceptibility or exposure to SARS-CoV-2 lowers the herd immunity threshold. medRxiv. Preprint. https://doi.org/10.1101/2020.04.27.20081893
6. Randolph H.E., Barreiro L.B. Herd immunity: understanding COVID-19. Immunity. 2020; 52(5): 737–41. https://doi.org/10.1016/j.immuni.2020.04.012
7. Newcombe R.G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat. Med. 1998; 17(8): 857–87. https://doi.org/10.1002/(sici)10970258(19980430)17:8%3C857::aid-sim777%3E3.0.co;2-e
8. Lee C.Y.P., Lin R.T.P., Renia L., Ng L.F.P. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol. 2020; 11: 879. https://doi.org/10.3389/fimmu.2020.00879
9. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Историк О.А., Мосевич О.С., Лялина Л.В. и др. Оценкa популяционого иммунитета к SARS-CoV-2 среди населения Ленинградской области в период эпидемии COVID-19. Проблемы особо опасных инфекций. 2020; (3): 114–123. DOI: 10.21055/0370-1069-2020-3-114-123
10. Huang A.T., Garcia-Carreras B., Hitchings M.D.T., Yang B., Katzelnick L.C., Rattigan S.M., et al. A systematic review of antibody mediated immunity to coronaviruses: antibody kinetics, correlates of protection, and association of antibody responses with severity of disease. medRxiv. 2020. Preprint. https://doi.org/10.1101/2020.04.14.20065771
11. Krátká Z., Luxová S., Malíčková K., Fürst T., Šimková H. Testing for COVID-19: a few points to remember. Čas. Lék. čes. 2020; 159(2): 72–7.
12. Lai C.C., Liu Y.H., Wang C.Y., Wang Y.H., Hsueh S.C., Yen M.Y., et al. Asymptomatic carrier state, acute respiratory disease, and pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and myths. J. Microbiol. Immunol. Infect. 2020; 53(3): 404–12. https://doi.org/10.1016/j.jmii.2020.02.012
13. Singhal T.A. Review of coronavirus disease-2019 (COVID-19). Indian J. Pediatr. 2020; 87(4): 281–6. https://doi.org/10.1007/s12098-020-03263-6
Об авторах
Попова Анна Юрьевна — д.м.н., проф., руководитель
Особенности формирования серопревалентности населения Российской Федерации к нуклеокапсиду SARS-CoV-2 в первую волну эпидемии COVID-19
Полный текст:
Аннотация
Пандемия коронавирусной (CoV) инфекции, названной COVID-19, стала одним из наиболее серьезных вызовов для населения подавляющего большинства стран мира. Быстрое глобальное распространение и повышенная летальность потребовали новых подходов к управлению эпидемическими процессами в глобальном масштабе. Одним из подобных подходов стал анализ серопревалентности к SARS-CoV-2 — этиологическому агенту COVID-19.
Цель работы — обобщить результаты первого этапа реализации программы Роспотребнадзора по оценке серопревалентности к нуклеокапсидному антигену (Nc) SARS-CoV-2 населения 26 регионов Российской Федерации, проведенного в первую волну эпидемии COVID-19.
Материалы и методы. Исследование серопревалентности на 26 модельных территориях Российской Федерации проведено по единой методике, разработанной Роспотребнадзором при участии Санкт-Петербургского НИИ эпидемиологии и микробиологии им. Пастера. Методика предусматривала формирование в модельном субъекте федерации группы добровольцев, у которых в плазме венозной крови иммуноферментным методом (ИФА) определяли наличие антител к Nc. Анализ первичных результатов в отдельных регионах опубликован в виде самостоятельных статей в периодической научной печати.
Результаты. Настоящая статья представляет собой итоговое обобщение данных, полученных во всех 26 регионах РФ. Общая серопревалентность к SARS-CoV-2 составила 19,5 (10,0– 25,6)%. Наибольший уровень серопревалентности отмечен в Калининградской области — 50,2%, а наименьший — в Республике Крым — 4,3%. Характер распределения по возрастам указывает на недостоверное преобладание доли серопревалентных лиц в возрастной группе 1–17 лет: 22,1 (13,1–31,8)%. Среди реконвалесцентов COVID-19 доля лиц, имевших антитела к Nc SARS-CoV, достигала 60,0 (40,0–73,3)%. Численность контактных лиц составила 6285 человек, или 8,5% от общей когорты волонтеров. Уровень серопревалентности среди них достигал 25,3 (17,95–35,8)%. Установлена прямая корреляционная связь между показателями серопревалентности у реконвалесцентов и контактных волонтеров. При этом было рассчитано репродуктивное число для SARS-CoV, составившее 5,8 (4,3–8,5). Это значит, что один реконвалесцент может заразить не менее 4 здоровых лиц. Опытным путем подтвержден высокий уровень бессимптомных форм COVID-19 среди серопозитивных лиц, составивший 93,6 (87,1–94,9)%.
Выводы. Проведенное однократное поперечное исследование позволило оценить структуру серопревалентности населения Российской Федерации. Полученные результаты могут лечь в основу когортного продольного исследования с серийным обследованием сформированной выборки, кратность и продолжительность которого будут определяться развитием эпидемического процесса COVID-19.
Ключевые слова
Об авторах
Доктор медицинских наук, профессор, руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.
Руководитель управления Роспотребнадзора по Москве.
Руководитель управления Роспотребнадзора по Калининградской области.
Доктор медицинских наук, профессор, директор.
Руководитель управления Роспотребнадзора по Санкт-Петербургу.
Руководитель управления Роспотребнадзора по Владимирской области.
Руководитель управления Роспотребнадзора по Челябинской области.
Руководитель управления Роспотребнадзора по Красноярскому краю.
Руководитель управления Роспотребнадзора по Приморскому краю.
Кандидат медицинских наук, заместитель руководителя Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.
Доктор медицинских наук, и.о. заместителя директора по научной работе.
Руководитель управления Роспотребнадзора по Ленинградской области.
Руководитель управления Роспотребнадзора по Ставропольскому краю.
Руководитель управления Роспотребнадзора по Свердловской области.
Доктор биологических наук, директор.
Руководитель управления Роспотребнадзора по Амурской области.
Академик РАН, доктор медицинских наук, профессор, директор.
Руководитель управления Роспотребнадзора по Тульской области.
Руководитель управления Роспотребнадзора по Мурманской области.
Доктор медицинских наук, профессор, заведующий лабораторией эпидемиологии инфекционных и неинфекционных заболеваний.
Кандидат медицинских наук, заместитель начальника управления эпидемиологического надзора Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека.
Руководитель управления Роспотребнадзора по Московской области.
Кандидат медицинских наук.
Руководитель управления Роспотребнадзора по Астраханской области.
Руководитель управления Роспотребнадзора по Белгородской области.
Руководитель управления Роспотребнадзора по Краснодарскому краю.
Доктор медицинских наук, доцент, руководитель управления Роспотребнадзора по Республике Татарстан.
Руководитель управления Роспотребнадзора по Республике Крым.
Руководитель управления Роспотребнадзора по Новосибирской области.
197101, Санкт-Петербург, ул. Мира, 14.
Тел.: 8 (911) 948-59-22 (моб.)
Доктор медицинских наук, профессор, директор.
Доктор медицинских наук, директор.
Академик РАН, доктор медицинских наук, профессор, директор.
Список литературы
1. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Андреева Е.Е., Комбарова С.Ю., Лялина Л.В., Смирнов В.С., Алешкин А.В., Кобзева Ю.В., Игнатова Е.Н., Осадчая М.Н., Назаренко Е.В., Антипова Л.Н., Басов А.А., Затевалов А.М., Новикова Л.И., Бочкарева С.С., Лиханская Е.Т., Ломоносова В.И., Тотолян А.А. Коллективный иммунитет к SARSCoV-2 жителей Москвы в эпидемический период COVID-19 // Инфекционные болезни. 2020. Т. 18, № 1. С. 8–16.
2. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Бабура Е.А., Михеенко О.П., Лялина Л.В., Смирнов В.С., Молчанова Ж.Р., Горбатова Я.В., Харитонова М.Н., Зубова А.Н., Погребная Т.Н., Данилова В.И., Кухарчук С.В., Дудинская Е.В., Арбузова Т.В., Ломоносова В.И., Тотолян А.А. Популяционный иммунитет к SARS-CoV-2 населения Калиниградской области в эпидемический сезон COVID-19 // Журнал инфектологии. 2020. Т. 12, № 5. С. 62–71.
3. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Балахонов С.В., Чеснокова М.В., Дубровина В.И., Лялина Л.В., Смирнов В.С., Трухина А.Г., Пережогин А.Н., Пятидесятникова А.Б., Брюхова Д.Д., Киселева Н.О., Гефан Н.Г., Гаврилова О.В., Гаврилова Т.А., Ломоносова В.И., Тотолян А.А. Опыт исследования серопревалентности к вирусу SARS-CoV-2 населения Иркутской области в период вспышки COVID-19 // Проблемы особо опасных инфекций. 2020. № 3. С. 106–113. doi: 10.21055/0370-1069-2020-3-106-113
4. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Башкетова Н.С., Фридман Р.К., Лялина Л.В., Смирнов В.С., Чхинджерия И.Г., Гречанинова Т.А., Агапов К.А., Арсентьева Н.А., Баженова Н.А., Бацунов О.К., Данилова Е.М., Зуева Е.В., Комкова Д.В., Кузнецова Р.Н., Любимова Н.Е., Маркова А.Н., Хамитова И.В., Ломоносова В.И., Ветров В.В., Миличкина А.М., Дедков В.Г., Тотолян А.А. Популяционный иммунитет к SARS-CoV-2 среди населения СанктПетербурга в период эпидемии COVID-19 // Проблемы особо опасных инфекций. 2020. № 3. С. 124–130. doi: 10.21055/0370-1069-2020-3-124-130
5. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Данилова Т.Е., Буланов М.В., Лялина Л.В., Смирнов В.С., Тотолян А.А. Анализ серопревалентности к SARS-CoV-2 среди населения Владимирской области в период эпидемии COVID-19 // Эпидемиология и инфекционные болезни. 2021. № 2 (в печати).
6. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Микаилова О.М., Комбарова С.Ю., Костина М.А., Алешкин А.В., Лялина Л.В., Смирнов В.С., Гвазава К.Р., Козлов А.В., Чапов Е.В., Сычев Д.А., Хаттатова Н.В., Басов А.А., Затевалов А.М., Новикова Л.И., Бочкарева С.С., Лиханская Е.И., Шарова А.А., Ломоносова В.И., Тотолян А.А. Структура серопревалентности к вирусу SARS-CoV-2 среди жителей Московской области в период эпидемической заболеваемости COID-19 // Инфекционные болезни. 2020. Т. 18, № 4. С. 17–26.
7. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Историк О.А., Мосевич О.С., Лялина Л.В., Смирнов В.С., Черный М.А., Балабышева Н.С., Логинова И.С., Владимирова О.С., Самоглядова И.С., Васев Н.А., Румянцева С.В., Чупалова Е.Ю., Селиванова Г.В., Муравьева М.В., Тимофеева Л.В., Ханкишиева Э.Н., Тыльчевская В.Д., Никитенко Н.Д., Костеницкая Т.И., Виркунен Н.В., Климкина И.М., Кузьмина Т.М., Дегтяренко Н.В., Базунова А.И., Филиппова Л.А., Пальчикова Н.А., Кукшкин А.В., Арсентьева Н.А., Бацунов О.К., Богумильчик Е.А., Воскресенская Е.А., Дробышевская В.Г., Зуева Е.В., Кокорина Г.И., Курова Н.Н., Любимова Н.Е., Ферман Р.С., Хамдулаева Г.Н., Хамитова И.В., Хорькова Е.В., Миличкина А.М., Дедков В.Г., Тотолян А.А. Оценкa популяционого иммунитета к SARS-CoV-2 среди населения Ленинградской области в период эпидемии COVID-19 // Проблемы особо опасных инфекций. 2020. № 3. С. 114–123. doi: 10.21055/0370-1069-2020-3-114-123
8. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Кутырев В.В., Кожанова О.И., Черкасская Т.С., Лялина В.И, Смирнов В.С., Щербакова С.А., Бугоркова С.А., Портенко С.А., Найденова Е.В., Ломоносова В.И., Тотолян А.А. Характеристика популяционного иммунитета к SARS-CoV-2 у жителей Саратова и Саратовской области в период эпидемии COVID-19 // Проблемы особо опасных инфекций. 2020, № 4. С. 106–116. doi: 10.21055/0370-1069-2020-4-106-116
9. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Носков А.К., Ковалев Е.В., Карпущенко Г.В., Лялина Л.В., Смирнов В.С., Чемисова О.С., Тришина А.В., Березняк Е.А., Воловикова С.В., Стенина С.И., Янович Е.Г., Мелоян М.Г., Асмолова Н.Ю., Усова А.А., Слись С.С., Тотолян А.А. Оценка популяционного иммунитета к SARS-CoV-2 на территории Ростовской области // Проблемы особо опасных инфекций. 2020. № 4. С. 117–124. doi: 10.21055/0370-1069-2020-4-117-124
10. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Оглезнева Е.Е., Краснопёров А.С., Лялина Л.В., Смирнов В.С., Дёмин А.Д., Кобринец Ж.В., Черскова А.Ю., Жидков В.А., Велитченко Д.А., Арбузова Т.В. Ломоносова В.И., Тотолян А.А. Серопревалентность к SARS-CoV-2 среди населения Белгородской области на фоне эпидемии COVID-19 // Эпидемиология и инфекционные болезни. 2021. № 1 (в печати).
11. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Патяшина М.А., Сизова Е.П., Юзлибаева Л.Р., Лялина Л.В., Смирнов В.С., Бадамшина Г.Г., Гончарова А.В., Арбузова Т.В., Ломоносова В.И., Тотолян А.А. Характеристика серопревалентности к SARS-CoV-2 среди населения Республики Татарстан на фоне COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 6. С. 518–528. doi: 10.36233/0372-9311-2020-97-6-2
12. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Степанова Т.Ф., Шарухо Г.В., Летюшев А.Н., Фольмер А.Я., Шепоткова А.А., Лялина Л.В., Смирнов В.С., Степанова К.Б., Панина Ц.А., Сидоренко О.Н., Иванова Н.А., Смирнова С.С., Мальченко И.Н., Охотникова Е.В., Стахова Е.Г., Тотолян А.А. Распределение серопревалентности к SARS-CоV-2 среди жителей Тюменской области в эпидемическом периоде COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 5. С. 392–400. doi: 10.36233/0372-9311-2020-97-5-1
13. Попова А.Ю., Ежлова Е.Б., Мельникова А.А., Троценко О.Е., Зайцева Т.А., Лялина Л.В., Гарбуз Ю.А., Смирнов В.С., Ломоносова В.И., Балахонцева Л.А., Котова В.О., Базыкина Е.А., Бутакова Л.В., Сапега Е.Ю., Алейникова Н.В., Бебенина Л.А., Лосева С.М., Каравянская Т.Н., Тотолян А.А. Уровень серопревалентности к SARS-CoV-2 среди жителей Хабаровского края на фоне эпидемии COVID-19 // Журнал микробиологии, эпидемиологии и иммунобиологии. 2021. Т. 98, № 1. С. 7–17. doi: 10.36233/0372-9311-92
14. Смирнов В.С., Тотолян А.А. Некоторые возможности иммунотерапии при коронавирусной инфекции // Инфекция и иммунитет. 2020. Т. 10, № 3. С. 446–458. doi:10.15789/2220-7619-SPO-1470
15. Amanat F., Stadlbauer, D., Strohmeier, S., Nguyen T.H.O., Chromikova V., McMahon M., Jiang K., Arunkumar G.A., Jurczyszak D., Polanco J., Bermudez-Gonzalez M., Kleiner G., Aydillo T., Miorin L., Fierer D.S., Lugo L.A., Kojic E.M., Stoever J., Liu S.T.H., Cunningham-Rundles C., Felgner P.L., Moran T., Garc a-Sastre A., Caplivski D., Cheng A.C., Kedzierska K., Vapalahti O., Hepojoki J.M., Simon V., Krammer F. A serological assay to detect SARS-CoV-2 seroconversion in humans. Nat. Med., 2020, vol. 26, pp. 1033–1036. doi: 10.1038/s41591-020-0913-5
16. Britton T., Ball F., Trapman P. A mathematical model reveals the influence of population heterogeneity on herd immunity to SARS-CoV-2. Science, 2020, vol. 369, no. 6505, pp. 846–849. doi: 10.1126/science.abc6810
17. Buitrago-Garcia D., Egli-Gany D., Counotte M.J., Hossmann S., Imeri H., Ipekci A.M., Salanti G., Low N., Ford N. Occurrence and transmission potential of asymptomatic and pre-symptomatic SARS-CoV-2 infections: A living systematic review and metaanalysis. PLoS Med. 2020, vol. 17, no. 9: e1003346. doi: 10.1371/journal.pmed.1003346
18. Caccuri F., Zani A., Messali S., Giovanetti M., Bugatti A., Campisi G., Filippini F., Scaltriti E., Ciccozzi M., Fiorentini S., Caruso A. A persistently replicating SARS-CoV-2 variant derived from an asymptomatic individual. J. Transl. Med., 2020, vol. 18: 362. doi: 10.1186/s12967-020-02535-1
19. Clemente-Suárez V.J., Hormeño-Holgado A., Jiménez M., Benitez-Agudelo J.C., Navarro-Jiménez E., Perez-Palencia N., Maestre-Serrano R., Laborde-Cárdenas C.C., Tornero-Aguilera J.F. Dynamics of population immunity due to the herd effect in the COVID-19 pandemic. Vaccines, 2020, vol.8, no. 2: 236. doi: 10.3390/vaccines8020236
20. Estudio ene-covid: informe final estudio nacional de sero-epidemiología de la infección por SARS-CoV-2 en España / Ministerio de Sanidad, Consumo y Bienestar Social. URL: https://www.mscbs.gob.es/ciudadanos/ene-covid/docs/ESTUDIO_ENE-COVID19_INFORME_FINAL.pdf
21. Fialkowski A., Gernez Y., Arya P., Weinacht K.G., Kinane T.B., Yonker L.M. Insight into the pediatric and adult dichotomy of COVID-19: Age-related differences in the immune response to SARS-CoV-2 infection. Pediatric Pulmonology, 2020, vol. 55, no. 10, pp. 2556–2564. doi: 10.1002/ppul.24981
22. Gómez-Carballa A., Bello X., Pardo-Seco J., Pérez del Molino M.L., Martinón-Torres F., Salas A. Phylogeography of SARSCoV-2 pandemic in Spain: a story of multiple introductions, micro-geographic stratification, founder effects, and super-spreaders. Zool. Res., 2020, vol. 41, no. 6, pp. 605–620. doi: 10.24272/j.issn.2095-8137.2020.217
23. Han D., Li R., Han Y., Zhang R., Li J. COVID-19: Insight into the asymptomatic SARS-COV-2 infection and transmission. Int. J. Biol. Sci., 2020, vol. 16, no. 15, pp. 2803–2811. doi: 10.7150/ijbs.48991
24. Harrison A.G., Lin T., Wang P. Mechanisms of SARS-CoV-2 transmission and pathogenesis. Trends Immunol., 2020, vol. 41, no. 12, pp. 1100–1115. doi: 10.1016/j.it.2020.10.004
25. Hassan S.A., Sheikh F.N., Jamal S., Ezeh J.K., Akhtar A. Coronavirus (COVID-19): a review of clinical features, diagnosis, and treatment. Cureus, 2020, vol. 12, no 3: e7355. doi: 10.7759/cureus.7355
26. Hernández C.R., Moreno J.C.S. Inmunidad frente a SARS-CoV-2: caminando hacia la vacunación revista española de quimioterapia. Rev. Esp. Quimioter., 2020, vol. 33, no. 6, pp. 392–398. doi:10.37201/req/086.2020
27. Iyer A.S., Jones F.K., Nodoushani A., Kelly M., Becker M., Slater D., Mills R., Teng E., Kamruzzaman M., Garcia-Beltran W.F., Astudillo M., Yang D., Miller T.E., Oliver E., Fischinger S., Atyeo C., Iafrate A.J., Calderwood S.B., Lauer S.A., Yu J., Li Z., Feldman J., Hauser B.M., Caradonna T.M., Branda J.A., Turbett S.E., LaRocque R.C., Mellon G., Barouch D.H., Schmidt A.G., Azman A.S., Alter G., Ryan E.T., Harris J.B., Charles R.C. Dynamics and significance of the antibody response to SARS-CoV-2 infection. MedRxiv, 2020: 20155374. doi: 10.1101/2020.07.18.20155374
28. Jiang S., Hillyer C., Du L. Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses. Trends Immunol., 2020, vol. 41, no. 5, pp. 355–359. doi: 10.1016/j.it.2020.03.007
29. Khoshchehreh M., Wald-Dickler N., Holtom P., Butler-Wu S.M. A needle in the haystack? Assessing the significance of envelope (E) gene-negative, nucleocapsid N2) gene-positive SARS-CoV-2 detection by the Cepheid Xpert Xpress SARS-CoV-2 assay. J. Clin. Virol., 2020, vol. 133: 104683. doi: 10.1016/j.jcv.2020.104683
30. Kwok K.O., Lai F., Wei W.I., Wong S.Y.S., Tang J.W.T. Herd immunity — estimating the level required to halt the COVID-19 epidemics in affected countries. J. Infect., 2020, vol. 80, no. 6, pp. e32–e33. doi: 10.1016/j.jinf.2020.03.027
31. Lai C.-C., Wang J.-H., Hsueh P.-R. Population-based seroprevalence surveys of anti-SARS-CoV-2 antibody: An up-to-date review. Int. J. Inf. Dis., 2020, vol. 101, pp. 314–322. doi: 10.1016/j.ijid.2020.10.011
32. Lee C.Y.-P., Lin R.T.P., Renia L., Ng L.F.P. Serological approaches for COVID-19: epidemiologic perspective on surveillance and control. Front. Immunol., 2020, vol. 11: 879. doi: 10.3389/fimmu.2020.00879
33. Lim Y.X., Ng Y.L., Tam J.P., Liu D. X. Human Coronaviruses: a review of virus–host interactions. Diseases, 2016, vol. 4, no. 3: 26. doi: 10.3390/diseases4030026
34. Liu Y., Gayle A.A., Wilder-Smith A., Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel. Med., 2020, vol. 27, no. 2: taaa021. doi: 10.1093/jtm/taaa021
35. Logunov D.Y., Dolzhikova I.V., Zubkova O.V., Tukhvatullin A.I., Shcheblyakov D.V., Dzharullaeva A.S., Grousova D.M., Erokhova A.S., Kovyrshina A.V., Botikov A.G., Izhaeva F.M., Popova O., Ozharovskaya T.A., Esmagambetov I.B., Favorskaya I.A., Zrelkin D.I., Voronina D.V., Shcherbinin D.N., Semikhin A.S., Simakova Y.V., Tokarskaya E.A., Lubenets N.L., Egorova D.A., Shmarov M.M., Nikitenko N.A., Morozova L.F., Smolyarchuk E.A., Kryukov E.V., Babira V.F., Borisevich S.V., Naroditsky B.S., Gintsburg A.L. Safety and immunogenicity of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine in two formulations: two open, non-randomised phase 1/2 studies from Russia. Lancet, 2020, vol. 296, pp. 887–897. doi: 10.1016/S0140-6736(20)31866-3
36. Lu X., Zhang L., Du H., Zhang J., Li Y.Y, Qu J., Zhang W., Wang Y., Bao S., Li Y., Wu C., Liu H., Liu D., Shao J., Peng X., Yang Y., Liu Z., Xiang Y., Zhang F., Silva R.M., Pinkerton K.E, Shen K., Xiao H., Xu S., Wong G.W.K., Chinese Pediatric Novel Coronavirus Study Team. SARS-CoV-2 infection in children. N. Engl. J. Med., 2020, vol. 382, no 17, pp. 1663–1665. doi: 10.1056/NEJMc2005073
37. Mair-Jenkins J., Saavedra-Campos M., Baillie J.K., Cleary P., Khaw F.M., Lim W.S., Makki S., Rooney K.D., Convalescent Plasma Study Group, Nguyen-Van-Tam J.S., Beck C.R. The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: a systematic review and exploratory metaanalysis. J. Infect. Dis., 2015, vol. 211, no. 1, pp. 80–90. doi: 10.1093/infdis/jiu396
38. Malik A.A., McFadden S.A.M., Elharake J., Omer S.B. Determinants of COVID-19 vaccine acceptance in the US. EClinicalMedicine, 2020, vol. 26: 100495. doi: 10.1016/j.eclinm.2020.100495
39. McAndrews K.M, Dowlatshahi D.P., Dai J., Becker L.M., Hensel J., Snowden L.M., Leveille J.M., Brunner M.R., Holden K.W., Hopkins N.S., Harris A.M., Kumpati J., Whitt M.A., Lee J.J., Ostrosky-Zeichner L.L., Papanna R., LeBleu V.S., Allison J.P., Kalluri R. Heterogeneous antibodies against SARS-CoV-2 spike receptor binding domain and nucleocapsid with implications for COVID-19 immunity. JCI Insight, 2020, vol. 5, no 18: e142386. doi: 10.1172/jci.insight.142386
40. MacDonald N.E., Comeau J., Dubé E., Bucci L., Graham J.E. A public health timeline to prepare for COVID-19 vaccines in Canada. Can. J. Public. Health, 2020, vol. 111, no. 6, pp. 945–952. doi: 10.17269/s41997-020-00423-1
41. Moderbacher C.R., Ramirez S.I., Dan J.M., Grifoni A., Hastie K.M., Weiskopf D., Belanger S., Abbott R.K., Kim C., Choi J., Kato Y., Crotty E. Kim G.C., Rawlings S.A., Mateus J., Ping L., Tse V., Frazier A., Baric R., Peters B., Greenbaum J., Saphire E.O., Smith D.M., Sette A., Crotty S. Antigen-specific adaptive immunity to SARS-CoV-2 in acute COVID-19 and associations with age and disease severity. Cell, 2020, vol. 183, no. 4, pp. 996–1012.e19. doi: 10.1016/j.cell.2020.09.038
42. Newcombe R.G. Two-sided confidence intervals for the single proportion: comparison of seven methods. Statistics in Medicine, 1998, vol. 17, pp. 857–887. doi: 10.1002/(sici)1097-0258(19980430)17:8 3.0.co;2-e
43. Nikolai L.A., Meyer C.G., Kremsner P.G., Velavana T.P. Asymptomatic SARS Coronavirus 2 infection: Invisible yet invincible. Int. J. Infect. Dis., 2020, vol. 100, pp. 112–116. doi: 10.1016/j.ijid.2020.08.076
44. Nishiura H., Kobayashi T., Miyama T., Suzuki A., Jung S., Hayashi K., Kinoshita R., Yang Y., Yuan B., Akhmetzhanov A.R., Linton N.M. Estimation of the asymptomatic ratio of novel coronavirus infections (COVID-19). Int. J. Infect. Dis., 2020, vol. 94, pp. 154–155. doi: 10.1016/j.ijid.2020.03.020
45. Oran D.P., Topol E.J. Prevalence of asymptomatic SARS-CoV-2 infection: a narrative review. Ann. Intern. Med., 2020, vol. 173, no. 5, pp. 362–367. doi: 10.7326/M20-3012
46. Randolph H.E., Barreiro L.B. Herd immunity: understanding COVID-19. Immunity, 2020, vol. 52, no. 5, pp. 737–741. doi: 10.1016/j.immuni.2020.04.012
47. Rao V., Thakur S., Rao J., Arakeri G., Brennan P.A., Jadhav S., Sayeed M.S., Rao G. Mesenchymal stem cells-bridge catalyst between innate and adaptive immunity in COVID 19. Med. Hypotheses, 2020, vol. 143: 109845. doi: 10.1016/j.mehy.2020.109845
48. Rostami A., Sepidarkish M., Leeflang M.M.G., Riahi S.M., Shiadeh M.N., Esfandyari S., Mokdad A.H., Hotez P.J., Gasser R.B. SARS-CoV-2 seroprevalence worldwide: a systematic review and meta-analysis. Clin. Microbiol. Infect., 2021, vol. 27, no. 3, pp. 331–340. doi: 10.1016/j.cmi.2020.10.020
49. Tang B., Wang X., Li Q., Bragazzi N.L., Tang S., Xiao Y., Wu J. Estimation of the transmission risk of 2019-nCoV and its implication for public health interventions (preprint). URL: https://ssrn.com/abstract=3525558
50. Terry J.S., Anderson L.B.R., Scherman M.S., McAlister C.E., Perera R., Schountz T., Geiss B.J. Development of SARS-CoV-2 nucleocapsid specific monoclonal antibodies. BioRxiv, 2020: 280370. doi: 10.1101/2020.09.03.280370
51. Vignesh R., Shankar E.M., Velu V., Thyagarajan S.P. Is herd immunity against SARS-CoV-2 a silver lining? Front. Immunol., 2020, vol. 11: 586781. doi: 10.3389/fimmu.2020.586781
52. Viner R.M., Mytton O. Bonell T.C., Melendez-Torres G.J., Ward J., Hudson L., Waddington C., Thomas J., Russell S., van der Klis F., Koirala A., Ladhani S., Panovska-Griffiths J., Davies N.G., Booy R., Eggo R. M. Susceptibility to SARS-CoV-2 Infection among children and adolescents compared with adults: a systematic review and meta-analysis. JAMA Pediatr., 2020: e204573. doi: 10.1001/jamapediatrics.2020.4573
53. Wolff F., Dahma H., Duterme C., Van den Wijngaert S., Vandenberg O., Cotton F., Montesinosb I. Monitoring antibody response following SARS-CoV-2 infection: diagnostic efficiency of 4 automated immunoassays. Diagn. Microbiol. Infect. Dis., 2020, vol. 98, no 3: 115140. doi: 10.1016/j.diagmicrobio.2020.115140
54. Wu C., Qavi A.J., Hachim A., Kavian N., Cole1 A.R., Moyle A.B., Wagner N.D., Sweeney-Gibbons J., Rohrs H.W., Gross M.L., Peiris J.S.M., Basler C.F., Farnsworth C.W., Valkenburg S.A., Amarasinghe G.K., Leung D.W. Characterization of SARS-CoV-2 N protein reveals multiple functional consequences of the C-terminal domain. bioRxiv, 2020: 404905. doi: 10.1101/2020.11.30.404905
55. Xia Y., Zhong L., Tan J., Zhang Z., Lyu J., Chen Y., Zhao A., Huang L., Long Z., Liu N.-N., Wang H, Li S. How to understand “herd immunity” in COVID-19 pandemic. Front Cell. Dev. Biol., 2020, vol. 8: 547314. doi: 10.3389/fcell.2020.547314
56. Xu X., Sun J., Nie S., Li H., Kong Y., Liang M., Hou J., Huang X., Li D., Ma T., Peng J., Gao S., Shao Y., Zhu H., J. Lau Y.-N., Wang G., Xie C., Jang L., Huang A., Yang, Z., Zhang K., Hou F.F. Seroprevalence of immunoglobulin M and G antibodies against SARS-CoV-2 in China. Nat. Med., 2020, vol. 26, pp. 1193–1195. doi: 10.1038/s41591-020-0949-6
57. Zeng W., Liu G., Ma H., Zhao D., Yang Y., Liu M., Mohammed A., Zhao C., Yang Y., Xie J., Ding C., Ma X., Weng J., Gao Y., He H., Jina T. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun., 2020, vol. 527, no. 3, pp. 618–623. doi: 10.1016/j.bbrc.2020.04.136
Дополнительные файлы
Для цитирования:
Попова А.Ю., Андреева Е.Е., Бабура Е.А., Балахонов С.В., Башкетова Н.С., Буланов М.В., Валеуллина Н.Н., Горяев Д.В., Детковская Н.Н., Ежлова Е.Б., Зайцева Н.Н., Историк О.А., Ковальчук И.В., Козловских Д.Н., Комбарова С.В., Курганова О.П., Кутырев В.В., Ломовцев А.Э., Лукичева Л.А., Лялина Л.В., Мельникова А.А., Микаилова О.М., Носков А.К., Носкова Л.Н., Оглезнева Е.Е., Осмоловская Т.П., Патяшина М.А., Пеньковская Н.А., Самойлова Л.В., Смирнов В.С., Степанова Т.Ф., Троценко О.Е., Тотолян А.А. Особенности формирования серопревалентности населения Российской Федерации к нуклеокапсиду SARS-CoV-2 в первую волну эпидемии COVID-19. Инфекция и иммунитет. 2021;11(2):297-323. https://doi.org/10.15789/2220-7619-FOD-1684
For citation:
Popova A.Yu., Andreeva E.E., Babura E.A., Balakhonov S.V., Bashketova N.S., Bulanov M.V., Valeullina N.N., Goryaev D.V., Detkovskaya N.N., Ezhlova E.B., Zaitseva N.N., Istorik O.A., Kovalchuk I.V., Kozlovskikh D.N., Kombarova S.V., Kurganova O.P., Kutyrev V.V., Lomovtsev A.E., Lukicheva L.A., Lyalina L.V., Melnikova A.A., Mikailova O.M., Noskov A.K., Noskova L.N., Oglezneva E.E., Osmolovskay T.P., Patyashina M.A., Penkovskaya N.A., Samoilova L.V., Smirnov V.S., Stepanova T.F., Trotsenko O.E., Totolyan A.A. Features of developing SARS-CoV-2 nucleocapsid protein population-based seroprevalence during the first wave of the COVID-19 epidemic in the Russian Federation. Russian Journal of Infection and Immunity. 2021;11(2):297-323. (In Russ.) https://doi.org/10.15789/2220-7619-FOD-1684